Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR
- PMID: 31900955
- DOI: 10.1002/mrc.4987
Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR
Abstract
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1 H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.
Keywords: 1H NMR; NMR; NMR crystallography; ab initio random structure searching; crystal structure prediction; organic molecular crystals; pharmaceuticals; polymorphism; small molecules.
© 2020 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Similar articles
-
Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.Phys Chem Chem Phys. 2013 Jun 7;15(21):8069-80. doi: 10.1039/c3cp41095a. Epub 2013 Mar 18. Phys Chem Chem Phys. 2013. PMID: 23503809
-
Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid.J Phys Chem A. 2020 Oct 29;124(43):8959-8977. doi: 10.1021/acs.jpca.0c07000. Epub 2020 Oct 16. J Phys Chem A. 2020. PMID: 32946236
-
Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.J Pharm Sci. 2016 Sep;105(9):2648-2655. doi: 10.1002/jps.24641. Epub 2016 Jan 18. J Pharm Sci. 2016. PMID: 26372719
-
The computational prediction of pharmaceutical crystal structures and polymorphism.Adv Drug Deliv Rev. 2004 Feb 23;56(3):301-19. doi: 10.1016/j.addr.2003.10.006. Adv Drug Deliv Rev. 2004. PMID: 14962583 Review.
-
Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.Chem Rev. 2016 May 11;116(9):5567-613. doi: 10.1021/acs.chemrev.5b00648. Epub 2016 Mar 23. Chem Rev. 2016. PMID: 27008426 Review.
Cited by
-
Physical analysis of aspirin in different phases and states using density functional theory.Heliyon. 2024 Jun 7;10(11):e32610. doi: 10.1016/j.heliyon.2024.e32610. eCollection 2024 Jun 15. Heliyon. 2024. PMID: 38961960 Free PMC article.
-
A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of l-tyrosine.Chem Sci. 2022 Mar 30;13(18):5277-5288. doi: 10.1039/d1sc06467c. eCollection 2022 May 11. Chem Sci. 2022. PMID: 35655549 Free PMC article.
-
Exploring the crystallisation of aspirin in a confined porous material using solid-state nuclear magnetic resonance.Faraday Discuss. 2025 Jan 8;255(0):483-494. doi: 10.1039/d4fd00123k. Faraday Discuss. 2025. PMID: 39356059 Free PMC article.
-
13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin.Molecules. 2023 Apr 13;28(8):3442. doi: 10.3390/molecules28083442. Molecules. 2023. PMID: 37110676 Free PMC article.
-
Sofosbuvir Polymorphs Distinguished by Linearly and Circularly Polarized Raman Microscopy.Anal Chem. 2024 Dec 3;96(48):18983-18993. doi: 10.1021/acs.analchem.4c03573. Epub 2024 Nov 21. Anal Chem. 2024. PMID: 39569750 Free PMC article.
References
REFERENCES
-
- S. Datta, D. J. W. Grant, Nat Rev Drug Discov 2004, 3, 42.
-
- D.-K. Bučar, R. W. Lancaster, J. Bernstein, Angewandte Chemie International Edition 2015, 54, 6972.
-
- L. Sarah, Faraday Discuss 2018, 211, 9. G. J. O. Beran, Angewandte Chemie International Edition 2015, 54, 396-398; M. A. Neumann, J. van de Streek, F. P. A. Fabbiani, P. Hidber, O. Grassmann, Nature Communications 2015, 6, 7793; G. M. Day, Crystallography Reviews 2011, 17, 3-52; A. V. Kazantsev, P. G. Karamertzanis, C. S. Adjiman, C. C. Pantelides, S. L. Price, P. T. A. Galek, G. M. Day, A. J. Cruz-Cabeza, International Journal of Pharmaceutics 2011, 418, 168-178; J. Yang, S. De, J. E. Campbell, S. Li, M. Ceriotti, G. M. Day, Chemistry of Materials 2018, 30, 4361-4371; F. Musil, S. De, J. Yang, J. E. Campbell, G. M. Day, M. Ceriotti, Chemical Science 2018, 9, 1289-1300; S. L. Price, S. M. Reutzel-Edens, Drug Discovery Today 2016, 21, 912-923; G. M. Day, T. G. Cooper, CrystEngComm 2010, 12, 2443-2453; G. M. Day, W. D. S. Motherwell, W. Jones, Physical Chemistry Chemical Physics 2007, 9, 1693-1704; P. G. Karamertzanis, A. V. Kazantsev, N. Issa, G. W. A. Welch, C. S. Adjiman, C. C. Pantelides, S. L. Price, Journal of Chemical Theory and Computation 2009, 5, 1432-1448; G. J. O. Beran, Chemical Reviews 2016, 116, 5567-5613; A. R. Oganov, C. J. Pickard, Q. Zhu, R. J. Needs, Nature Reviews Materials 2019, 4, 331-348.
-
- A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole, K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day, R. A. DiStasio Jr., A. Dzyabchenko, B. P. van Eijck, D. M. Elking, J. A. van den Ende, J. C. Facelli, M. B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee, R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton, L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick, N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma, N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes, M. P. Metz, A. J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs, M. A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov, A. M. Orendt, G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa, L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. Schneider, C. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. Szalewicz, C. R. Taylor, A. Tkatchenko, M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu, C. R. Groom, Acta Crystallographica Section B 2016, 72, 439.
-
- D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E. Bartashevich, S. X. M. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. D. Valle, G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro, D. Grillo, M. Habgood, D. W. M. Hofmann, F. Hofmann, K. V. J. Jose, P. G. Karamertzanis, A. V. Kazantsev, J. Kendrick, L. N. Kuleshova, F. J. J. Leusen, A. V. Maleev, A. J. Misquitta, S. Mohamed, R. J. Needs, M. A. Neumann, D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides, C. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van de Streek, T. S. Thakur, S. Tiwari, E. Venuti, I. K. Zhitkov, Acta Crystallogr B 2011, 67, 535.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources