Pathogenic variants in the TRIP11 gene cause a skeletal dysplasia spectrum from odontochondrodysplasia to achondrogenesis 1A
- PMID: 31903676
- DOI: 10.1002/ajmg.a.61460
Pathogenic variants in the TRIP11 gene cause a skeletal dysplasia spectrum from odontochondrodysplasia to achondrogenesis 1A
Abstract
The thyroid hormone receptor interactor 11 (TRIP11) gene encodes the Golgi microtubule-associated protein 210 (GMAP-210), a protein essential for the operation of the Golgi apparatus. It is known that null mutations in TRIP11 disrupt Golgi function and cause a lethal skeletal dysplasia known as achondrogenesis type 1A (ACG1A), however recently, hypomorphic mutations in that gene have been linked to odontochondrodysplasia (ODCD), a nonlethal skeletal dysplasia characterized by skeletal changes in the spine and in the metaphyseal regions, associated with dentinogenesis imperfecta. Here we present two patients reflecting the phenotypic spectrum related to different TRIP11 variants. The first is a female child with ODCD, for whom a homozygous in-frame splicing mutation in intron 9 of TRIP11 was identified. The mutation appears to lead to the expression of an alternative TRIP11 transcript, that may explain the less severe radiological alterations in ODCD. The second is a fetus with classical form of ACG1A, associated with typical molecular findings (frameshift) in exon 11 of TRIP11, both novel mutations. The two patients reported here represent the TRIP11 spectrum of skeletal dysplasia ranging from mild to lethal phenotypes, thereby enabling one to suggest a genotype-phenotype correlation in these diseases.
Keywords: TRIP11; achondrogenesis 1A; odontochondrodysplasia; phenotypic spectrum; splicing variant.
© 2020 Wiley Periodicals, Inc.
Similar articles
-
A Novel Mutation in the TRIP11 Gene: Diagnostic Approach from Relatively Common Skeletal Dysplasias to an Extremely Rare Odontochondrodysplasia.J Clin Res Pediatr Endocrinol. 2022 Dec 1;14(4):475-480. doi: 10.4274/jcrpe.galenos.2021.2021.0099. Epub 2021 Jun 11. J Clin Res Pediatr Endocrinol. 2022. PMID: 34111908 Free PMC article.
-
Description of four patients with TRIP11 variants expand the clinical spectrum of odontochondroplasia (ODCD) and demonstrate the existence of common variants.Eur J Med Genet. 2021 May;64(5):104198. doi: 10.1016/j.ejmg.2021.104198. Epub 2021 Mar 18. Eur J Med Genet. 2021. PMID: 33746040
-
Biallelic deep intronic variant c.5457+81T>A in TRIP11 causes loss of function and results in achondrogenesis 1A.Hum Mutat. 2021 Aug;42(8):1005-1014. doi: 10.1002/humu.24235. Epub 2021 Jun 8. Hum Mutat. 2021. PMID: 34057271
-
Skeletal dysplasias of the fetus and infant: comprehensive review and our experience over a 10-year period.Cesk Patol. 2023 Summer;59(2):68-79. Cesk Patol. 2023. PMID: 37468326 Review. English.
-
Some chondrodysplasias with short limbs: molecular perspectives.Am J Med Genet. 2002 Oct 15;112(3):304-13. doi: 10.1002/ajmg.10780. Am J Med Genet. 2002. PMID: 12357475 Review.
Cited by
-
The molecular complex of ciliary and golgin protein is crucial for skull development.Development. 2021 Jul 1;148(13):dev199559. doi: 10.1242/dev.199559. Epub 2021 Jul 1. Development. 2021. PMID: 34128978 Free PMC article.
-
Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation.Cells. 2021 Nov 23;10(12):3275. doi: 10.3390/cells10123275. Cells. 2021. PMID: 34943782 Free PMC article. Review.
-
The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function.Biol Open. 2023 Feb 15;12(2):bio059719. doi: 10.1242/bio.059719. Epub 2023 Feb 21. Biol Open. 2023. PMID: 36802341 Free PMC article. Review.
-
Multiple golgins are required to support extracellular matrix secretion, modification, and assembly.J Cell Biol. 2025 Oct 6;224(10):e202411167. doi: 10.1083/jcb.202411167. Epub 2025 Aug 18. J Cell Biol. 2025. PMID: 40824304 Free PMC article.
-
A Novel Mutation in the TRIP11 Gene: Diagnostic Approach from Relatively Common Skeletal Dysplasias to an Extremely Rare Odontochondrodysplasia.J Clin Res Pediatr Endocrinol. 2022 Dec 1;14(4):475-480. doi: 10.4274/jcrpe.galenos.2021.2021.0099. Epub 2021 Jun 11. J Clin Res Pediatr Endocrinol. 2022. PMID: 34111908 Free PMC article.
References
REFERENCES
-
- Abramowicz, A., & Gos, M. (2018). Splicing mutations in human genetic disorders: Examples, detection, and confirmation. Journal of Applied Genetics, 59(3), 253-268.
-
- Aigner, T., Rau, T., Niederhagn, M., Zaucke, F., Schmitz, M., Pöhls, U., … Thiel, C. T. (2007). Achondrogenesis type IA (Houston-Harris): A still-unresolved molecular phenotype. Pediatrica and Deveolpmental Pathology, 10(4), 328-334.
-
- Barron, M. J., McDonnell, S. T., Mackie, I., & Dixon, M. J. (2008). Hereditary dentine disorders: Dentinogenesis imperfecta and dentine dysplasia. Orphanet Journal of Rare Diseases, 3, 31.
-
- Bonaventure, J., Stanescu, R., Stanescu, V., Allain, J. C., Muriel, M. P., Ginisty, D., & Maroteaux, P. (1992). Type II collagen defect in two sibs with the Goldblatt syndrome, a chondrodysplasia with dentinogenesis imperfecta, and joint laxity. American Journal of Medical Genetics, 44(6), 738-753.
-
- Borochowitz, Z., Lachman, R., Adomian, G. E., Spear, G., Jones, K., & Rimoin, D. L. (1988). Achondrogenesis type I: Delineation of further heterogeneity and identification of two distinct subgroups. The Journal of Pediatrics, 112(1), 23-31.
Publication types
MeSH terms
Substances
Supplementary concepts
Grants and funding
- 424074/2016-8/Conselho Nacional de Desenvolvimento Científico e Tecnológico/International
- 590148/2011-7/Conselho Nacional de Desenvolvimento Científico e Tecnológico/International
- 2015/22145-6/Fundação de Amparo à Pesquisa do Estado de São Paulo/International
- 19300 487/2011/Fundação de Apoio à Pesquisa do Distrito Federal/International
- 402/15/Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas/International
LinkOut - more resources
Full Text Sources
Molecular Biology Databases