Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec:60 Suppl 3:S59-S67.
doi: 10.1111/epi.14935.

Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond

Affiliations
Review

Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond

Markus Wolff et al. Epilepsia. 2019 Dec.

Abstract

Pathogenic variants in the SCN2A gene are associated with a variety of neurodevelopmental phenotypes, defined in recent years through multicenter collaboration. Phenotypes include benign (self-limited) neonatal and infantile epilepsy and more severe developmental and epileptic encephalopathies also presenting in early infancy. There is increasing evidence that an important phenotype linked to the gene is autism and intellectual disability without epilepsy or with rare seizures in later childhood. Other associations of SCN2A include the movement disorders chorea and episodic ataxia. It is likely that as genetic testing enters mainstream practice that new phenotypic associations will be identified. Some missense, gain of function variants tend to present in early infancy with epilepsy, whereas other missense or truncating, loss of function variants present with later-onset epilepsies or intellectual disability only. Knowledge of both mutation type and functional consequences can guide precision therapy. Sodium channel blockers may be effective antiepileptic medications in gain of function, neonatal and infantile presentations.

Keywords: Nav1.2 channel; SCN2A gene; autism; developmental and epileptic encephalopathy; movement disorders; sodium channel blockers.

PubMed Disclaimer

References

REFERENCES

    1. Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron. 2001;30:91-104.
    1. Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, Barres BA. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 2001;30:105-19.
    1. Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci. 2003;23:2306-13.
    1. Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain. 2010b;133:1403-14.
    1. Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA 2001;98:6384-9.

MeSH terms

Substances