Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 2;12(1):130.
doi: 10.3390/nu12010130.

Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction

Affiliations
Review

Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction

Carlos González-Quilen et al. Nutrients. .

Abstract

The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.

Keywords: IBD; condensed tannin; flavan-3-ol; flavonoid; gut; inflammation; metabolic endotoxemia; obesity; permeability; procyanidin.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Dysfunctional intestinal mucosal. Chronic exposition to detrimental environmental stimuli, including several food components, may lead to dysbiosis, mucus layer depletion, and breakdown of the epithelial barrier. Constitutive stimulation of NF-κB signaling by bacterial endotoxins induce overproduction of pro-inflammatory cytokines and reactive species of oxygen and nitrogen, feeding back the epithelial barrier disruption and immune cell infiltration.
Figure 2
Figure 2
Chemical structures of proanthocyanidins (PACs). Flavan-3-ol monomers differ based on the hydroxylation pattern and their cis- or trans- configuration. Dimers A1/A2 and B1/B2 are shown as example of A- and B-type PACs, respectively.
Figure 3
Figure 3
Molecular mechanisms implicated in the physiological effects of PAC in the intestinal mucosa. PACs suppress inflammation interacting with bacterial endotoxins, as well as protein receptors, kinases and transcription factors involved in the pro-inflammatory signaling (NF-κB and mitogen-activated protein kinases (MAPK) pathways). Oxidative stress is mitigated directly by free-radical scavenging and indirectly by the activation of factor-erythroid-2-related factor 2 (NRF2), leading to antioxidant enzyme production via antioxidant responsive element (ARE) binding.

References

    1. Chelakkot C., Ghim J., Ryu S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018;50:103. doi: 10.1038/s12276-018-0126-x. - DOI - PMC - PubMed
    1. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm. Intest. Dis. 2016;1:135–145. doi: 10.1159/000447252. - DOI - PMC - PubMed
    1. Clemente-Postigo M., Oliva-Olivera W., Coin-Aragüez L., Ramos-Molina B., Giraldez-Perez R.M., Lhamyani S., Alcaide-Torres J., Perez-Martinez P., El Bekay R., Cardona F., et al. Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am. J. Physiol. Metab. 2019;316:E319–E332. doi: 10.1152/ajpendo.00277.2018. - DOI - PubMed
    1. Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today. 2000;5:294–300. doi: 10.1016/S1359-6446(00)01511-7. - DOI - PubMed
    1. Costa C., Tsatsakis A., Mamoulakis C., Teodoro M., Briguglio G., Caruso E., Tsoukalas D., Margina D., Dardiotis E., Kouretas D., et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017;110:286–299. doi: 10.1016/j.fct.2017.10.023. - DOI - PubMed

LinkOut - more resources