Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;91(3):433-444.
doi: 10.1080/02701367.2019.1680787. Epub 2020 Jan 6.

Coordination Dynamics of Upper Limbs in Swimming: Effects of Speed and Fluid Flow Manipulation

Affiliations

Coordination Dynamics of Upper Limbs in Swimming: Effects of Speed and Fluid Flow Manipulation

Brice Guignard et al. Res Q Exerc Sport. 2020 Sep.

Abstract

Purpose: Motor outputs are governed by dynamics organized around stable states and spontaneous transitions: we seek to investigate the swimmers' motor behavior flexibility as a function of speed and aquatic environment manipulations. Method: Eight elite male swimmers partook an eight-level incremental test (4% increment from 76% to 104% of their mean speed on 200 m front crawl) in a quasi-static aquatic environment (pool). Swimmers then partook another incremental test at similar effort in a dynamic aquatic environment (swimming flume) up to maximal speed. Stroke rate (SR), index of coordination (IdC) and intersegmental coupling of the upper limbs were computed from the inertial sensors located on the upper limbs and the sacrum. Results: With speed increase, SR values presented a steeper linear increase in the pool than in the flume. IdC values increased also in the pool but remained stable in the flume. Individual SR and IdC vs. speed increase displayed second-order polynomial dynamics, indicative of adaptive flexibility with a range of extremum values more restricted in the flume. Finally, a reduction of the in-phase coordination pattern was noted with flume speed increase. Conclusions: Action possibilities were strongly constrained in the flume at the highest speeds as the fluid flow led to discontinuity in the propulsive actions of the upper limbs and lack of in-phase inter-segmental coordination. This highlights that the behavioral flexibility was restricted in the flume in comparison to the pool, in which the exploitation of opportunities for action involved a larger number of degrees of freedom in the movement.

Keywords: Motor flexibility; constraints; individual–environment coupling; motor control.

PubMed Disclaimer

LinkOut - more resources