Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb;21(2):103-115.
doi: 10.1038/s41583-019-0257-7. Epub 2020 Jan 6.

The future of stem cell therapies for Parkinson disease

Affiliations
Review

The future of stem cell therapies for Parkinson disease

Malin Parmar et al. Nat Rev Neurosci. 2020 Feb.

Abstract

Cell-replacement therapies have long been an attractive prospect for treating Parkinson disease. However, the outcomes of fetal tissue-derived cell transplants in individuals with Parkinson disease have been variable, in part owing to the limitations of fetal tissue as a cell source, relating to its availability and the lack of possibility for standardization and to variation in methods. Advances in developmental and stem cell biology have allowed the development of cell-replacement therapies that comprise dopamine neurons derived from human pluripotent stem cells, which have several advantages over fetal cell-derived therapies. In this Review, we critically assess the potential trajectory of this line of translational and clinical research and address its possibilities and current limitations and the broader range of Parkinson disease features that dopamine cell replacement based on generating neurons from human pluripotent stem cells could effectively treat in the future.

PubMed Disclaimer

References

    1. Henchcliffe, C. & Parmar, M. Repairing the brain: cell replacement using stem cell-based technologies. J. Parkinsons Dis. 8, S131–S137 (2018). - PubMed - PMC - DOI
    1. Barker, R. A., Barrett, J., Mason, S. L. & Bjorklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013). A systematic review of transplantation trials using human fetal tissue and that includes critical reappraisal of data from the clinical trials. - PubMed - DOI
    1. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011). The first protocol of bona fide hPSC-derived mesDA neurons via floorplate progenitors with good in vivo survival and functional maturation. - PubMed - PMC - DOI
    1. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012). - PubMed - DOI
    1. Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2, 337–350 (2014). - DOI

MeSH terms