Machine learning in rheumatology approaches the clinic
- PMID: 31908355
- DOI: 10.1038/s41584-019-0361-0
Machine learning in rheumatology approaches the clinic
References
-
- Sieberts, S. K. et al. Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nat. Commun. 7, 12460 (2016). - DOI
-
- Kim, K. J. et al. Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients. Clin. Immunol. 202, 1–10 (2019). - DOI
-
- Guan, Y. et al. Machine learning to predict anti-TNF drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers. Arthritis Rheum. 71, 1987–1996 (2019). - DOI
-
- Eng, S. W. M. et al. Patterns of joint involvement in juvenile idiopathic arthritis and prediction of disease course: a prospective study with multilayer non-negative matrix factorization. PLOS Med. 16, e1002750 (2019). - DOI
-
- Plenge, R. M. et al. Crowdsourcing genetic prediction of clinical utility in the Rheumatoid Arthritis Responder Challenge. Nat. Genet. 45, 468–469 (2013). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
