Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan;52(1):56-73.
doi: 10.1038/s41588-019-0537-1. Epub 2020 Jan 7.

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes

Laura Fachal  1 Hugues Aschard #  2   3   4 Jonathan Beesley #  5 Daniel R Barnes  6 Jamie Allen  6 Siddhartha Kar  1 Karen A Pooley  6 Joe Dennis  6 Kyriaki Michailidou  6   7 Constance Turman  4 Penny Soucy  8 Audrey Lemaçon  8 Michael Lush  6 Jonathan P Tyrer  1 Maya Ghoussaini  1 Mahdi Moradi Marjaneh  5   9 Xia Jiang  3 Simona Agata  10 Kristiina Aittomäki  11 M Rosario Alonso  12 Irene L Andrulis  13   14 Hoda Anton-Culver  15 Natalia N Antonenkova  16 Adalgeir Arason  17   18 Volker Arndt  19 Kristan J Aronson  20 Banu K Arun  21 Bernd Auber  22 Paul L Auer  23   24 Jacopo Azzollini  25 Judith Balmaña  26   27 Rosa B Barkardottir  17   18 Daniel Barrowdale  6 Alicia Beeghly-Fadiel  28 Javier Benitez  29   30 Marina Bermisheva  31 Katarzyna Białkowska  32 Amie M Blanco  33 Carl Blomqvist  34   35 William Blot  28   36 Natalia V Bogdanova  16   37   38 Stig E Bojesen  39   40   41 Manjeet K Bolla  6 Bernardo Bonanni  42 Ake Borg  43 Kristin Bosse  44 Hiltrud Brauch  45   46   47 Hermann Brenner  19   47   48 Ignacio Briceno  49   50 Ian W Brock  51 Angela Brooks-Wilson  52   53 Thomas Brüning  54 Barbara Burwinkel  55   56 Saundra S Buys  57 Qiuyin Cai  28 Trinidad Caldés  58 Maria A Caligo  59 Nicola J Camp  60 Ian Campbell  61   62 Federico Canzian  63 Jason S Carroll  64 Brian D Carter  65 Jose E Castelao  66 Jocelyne Chiquette  67 Hans Christiansen  37 Wendy K Chung  68 Kathleen B M Claes  69 Christine L Clarke  70 GEMO Study CollaboratorsEMBRACE CollaboratorsJ Margriet Collée  71 Sten Cornelissen  72 Fergus J Couch  73 Angela Cox  51 Simon S Cross  74 Cezary Cybulski  32 Kamila Czene  75 Mary B Daly  76 Miguel de la Hoya  58 Peter Devilee  77   78 Orland Diez  79   80 Yuan Chun Ding  81 Gillian S Dite  82 Susan M Domchek  83 Thilo Dörk  38 Isabel Dos-Santos-Silva  84 Arnaud Droit  8   85 Stéphane Dubois  8 Martine Dumont  8 Mercedes Duran  86 Lorraine Durcan  87   88 Miriam Dwek  89 Diana M Eccles  90 Christoph Engel  91 Mikael Eriksson  75 D Gareth Evans  92   93 Peter A Fasching  94   95 Olivia Fletcher  96 Giuseppe Floris  97 Henrik Flyger  98 Lenka Foretova  99 William D Foulkes  100 Eitan Friedman  101   102 Lin Fritschi  103 Debra Frost  6 Marike Gabrielson  75 Manuela Gago-Dominguez  104   105 Gaetana Gambino  59 Patricia A Ganz  106 Susan M Gapstur  65 Judy Garber  107 José A García-Sáenz  108 Mia M Gaudet  65 Vassilios Georgoulias  109 Graham G Giles  82   110   111 Gord Glendon  13 Andrew K Godwin  112 Mark S Goldberg  113   114 David E Goldgar  115 Anna González-Neira  30 Maria Grazia Tibiletti  116 Mark H Greene  117 Mervi Grip  118 Jacek Gronwald  32 Anne Grundy  119 Pascal Guénel  120 Eric Hahnen  121   122 Christopher A Haiman  123 Niclas Håkansson  124 Per Hall  75   125 Ute Hamann  126 Patricia A Harrington  1 Jaana M Hartikainen  127   128   129 Mikael Hartman  130   131 Wei He  75 Catherine S Healey  1 Bernadette A M Heemskerk-Gerritsen  132 Jane Heyworth  133 Peter Hillemanns  38 Frans B L Hogervorst  134 Antoinette Hollestelle  132 Maartje J Hooning  132 John L Hopper  82 Anthony Howell  135 Guanmengqian Huang  126 Peter J Hulick  136   137 Evgeny N Imyanitov  138 KConFab InvestigatorsHEBON InvestigatorsABCTB InvestigatorsClaudine Isaacs  139 Motoki Iwasaki  140 Agnes Jager  132 Milena Jakimovska  141 Anna Jakubowska  32   142 Paul A James  62   143 Ramunas Janavicius  144   145 Rachel C Jankowitz  146 Esther M John  147 Nichola Johnson  96 Michael E Jones  148 Arja Jukkola-Vuorinen  149 Audrey Jung  150 Rudolf Kaaks  150 Daehee Kang  151   152   153 Pooja Middha Kapoor  150   154 Beth Y Karlan  155   156 Renske Keeman  72 Michael J Kerin  157 Elza Khusnutdinova  31   158 Johanna I Kiiski  159 Judy Kirk  160 Cari M Kitahara  161 Yon-Dschun Ko  162 Irene Konstantopoulou  163 Veli-Matti Kosma  127   128   129 Stella Koutros  164 Katerina Kubelka-Sabit  165 Ava Kwong  166   167   168 Kyriacos Kyriacou  7 Yael Laitman  101 Diether Lambrechts  169   170 Eunjung Lee  123 Goska Leslie  6 Jenny Lester  155   156 Fabienne Lesueur  171   172   173 Annika Lindblom  174   175 Wing-Yee Lo  45 Jirong Long  28 Artitaya Lophatananon  176 Jennifer T Loud  117 Jan Lubiński  32 Robert J MacInnis  82   110 Tom Maishman  87   88 Enes Makalic  82 Arto Mannermaa  127   128   129 Mehdi Manoochehri  126 Siranoush Manoukian  25 Sara Margolin  125   177 Maria Elena Martinez  105   178 Keitaro Matsuo  179   180 Tabea Maurer  181 Dimitrios Mavroudis  109 Rebecca Mayes  1 Lesley McGuffog  6 Catriona McLean  182 Noura Mebirouk  171   172   183 Alfons Meindl  184 Austin Miller  185 Nicola Miller  157 Marco Montagna  10 Fernando Moreno  108 Kenneth Muir  176 Anna Marie Mulligan  186   187 Victor M Muñoz-Garzon  188 Taru A Muranen  159 Steven A Narod  189 Rami Nassir  190 Katherine L Nathanson  83 Susan L Neuhausen  81 Heli Nevanlinna  159 Patrick Neven  97 Finn C Nielsen  191 Liene Nikitina-Zake  192 Aaron Norman  193 Kenneth Offit  194   195 Edith Olah  196 Olufunmilayo I Olopade  197 Håkan Olsson  198 Nick Orr  199 Ana Osorio  29   30 V Shane Pankratz  200 Janos Papp  196 Sue K Park  151   152   153 Tjoung-Won Park-Simon  38 Michael T Parsons  5 James Paul  201 Inge Sokilde Pedersen  202   203   204 Bernard Peissel  25 Beth Peshkin  139 Paolo Peterlongo  205 Julian Peto  84 Dijana Plaseska-Karanfilska  141 Karolina Prajzendanc  32 Ross Prentice  23 Nadege Presneau  89 Darya Prokofyeva  158 Miquel Angel Pujana  206 Katri Pylkäs  207   208 Paolo Radice  209 Susan J Ramus  210   211 Johanna Rantala  212 Rohini Rau-Murthy  195 Gad Rennert  213 Harvey A Risch  214 Mark Robson  195 Atocha Romero  215 Maria Rossing  191 Emmanouil Saloustros  216 Estela Sánchez-Herrero  215 Dale P Sandler  217 Marta Santamariña  29   218   219 Christobel Saunders  220 Elinor J Sawyer  221 Maren T Scheuner  33 Daniel F Schmidt  82   222 Rita K Schmutzler  121   122 Andreas Schneeweiss  56   223 Minouk J Schoemaker  148 Ben Schöttker  19   224 Peter Schürmann  38 Christopher Scott  193 Rodney J Scott  225   226   227 Leigha Senter  228 Caroline M Seynaeve  132 Mitul Shah  1 Priyanka Sharma  229 Chen-Yang Shen  230   231 Xiao-Ou Shu  28 Christian F Singer  232 Thomas P Slavin  233 Snezhana Smichkoska  234 Melissa C Southey  111   235 John J Spinelli  236   237 Amanda B Spurdle  5 Jennifer Stone  82   238 Dominique Stoppa-Lyonnet  183   239   240 Christian Sutter  241 Anthony J Swerdlow  148   242 Rulla M Tamimi  3   4   243 Yen Yen Tan  244 William J Tapper  90 Jack A Taylor  217   245 Manuel R Teixeira  246   247 Maria Tengström  127   248   249 Soo Hwang Teo  250   251 Mary Beth Terry  252 Alex Teulé  253 Mads Thomassen  254 Darcy L Thull  255 Marc Tischkowitz  100   256 Amanda E Toland  257 Rob A E M Tollenaar  258 Ian Tomlinson  259   260 Diana Torres  49   126 Gabriela Torres-Mejía  261 Melissa A Troester  262 Thérèse Truong  120 Nadine Tung  263 Maria Tzardi  264 Hans-Ulrich Ulmer  265 Celine M Vachon  266 Christi J van Asperen  267 Lizet E van der Kolk  134 Elizabeth J van Rensburg  268 Ana Vega  269 Alessandra Viel  270 Joseph Vijai  194   195 Maartje J Vogel  134 Qin Wang  6 Barbara Wappenschmidt  121   122 Clarice R Weinberg  271 Jeffrey N Weitzel  233 Camilla Wendt  177 Hans Wildiers  97 Robert Winqvist  207   208 Alicja Wolk  124   272 Anna H Wu  123 Drakoulis Yannoukakos  163 Yan Zhang  19   47 Wei Zheng  28 David Hunter  273 Paul D P Pharoah  1   6 Jenny Chang-Claude  150   181 Montserrat García-Closas  164   274 Marjanka K Schmidt  72   275 Roger L Milne  82   110   111 Vessela N Kristensen  276   277   278   279 Juliet D French  5 Stacey L Edwards  5 Antonis C Antoniou  6 Georgia Chenevix-Trench  5 Jacques Simard  8 Douglas F Easton  1   6 Peter Kraft  280   281 Alison M Dunning  282
Collaborators, Affiliations

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes

Laura Fachal et al. Nat Genet. 2020 Jan.

Abstract

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests Statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1. Flowchart summarizing the study design.
Logistic regression summary statistics were used to select the final set of variants to run stepwise multinomial regression. These results were meta-analysed with CIMBA to provide the final set of strong independent signals and their CCVs. Through a case-only analysis we identified significant differences in effect sizes between ER-positive and ER-negative breast cancer and used this to classify the phenotype for each independent signal. With these strong CCVs, we ran the bio-features enrichment analysis, which identified the features to be included in the PAINTOR models, together with the OncoArray logistic regression summary statistics, and the OncoArray LD. Both multinomial regression CCVs and PAINTOR high Posterior Probability variants were analyzed with INQUISIT to determine high confidence target genes. Finally, we used the set of high confidence target genes to identify enriched pathways. a conditional on the index variants from BCAC strong signals.
Figure 2
Figure 2. Determining independent risk signals and credible candidate variants (CCVs).
(a) Number of independent signals per region identified through multinomial stepwise logistic regression. (b) Signal classification according to their confidence into strong and moderate confidence signals. (c) Number of CCVs per signal at strong confidence signals identified through multinomial stepwise logistic regression. (d) Number of CCVs per signal at moderate confidence signals identified through multinomial stepwise regression. (e) Subtype classification of strong signals into ER-positive, ER-negative and signals equally associated with both phenotypes (ER-neutral) from BCAC analysis. (f) Subtype classification from the meta-analysis of BCAC and CIMBA. Between brackets, number of CCVs from the meta-analysis of BCAC and CIMBA. (g) Number of variants at different posterior probability thresholds. 15 variants reach a PP ≥ 80% by at least one of the three models (ER-all, ER-positive, ER-negative).
Figure 3
Figure 3. Overlap of CCVs with gene regulatory regions gene bodies and transcription factor binding sites.
(a) Breast cancer CCVs overlap with chromatin states and broad breast cells epigenetic marks. (b) Breast cancer CCVs overlap with breast cells epigenetic marks. (c) Autoimmune CCVs overlap with breast cells epigenetic marks. (d) Breast cancer CCVs overlap with autoimmune-related epigenetic marks. (e) Autoimmune CCVs overlap with autoimmune-related epigenetic marks. (f) Significant ER-positive CCVs overlap with transcription factors binding sites. TFBSs found significant for ER-positive CCVs are highlighted in red (x axis labels). (g) Significant ER-negative CCVs overlap with transcription factors binding sites. (h) Significant ER-neutral CCVs overlap with transcription factors binding sites. Strong column: analysis with all CCVs at strong signals. ER-positive, ER-negative, ER-neutral: analysis of CCVs at strong signals stratified by phenotype. Logistic regression robust variance estimation for clustered observations, Wald test Χ2 p-values estimated using 67,136 ER-positive and 17,506 ER-negative cases, together with 88,937 controls. Non-significant p-values are noted as dark grey. Significance defined as FDR 5%, which corresponds to the following P-value thresholds: Strong signals P-value = 1.66x10-2, ER-positive P-value = 2.42x10-2; ER-negative P-value 3.02x10-3; ER-neutral P-value = 1.76x10-3.
Figure 4
Figure 4. Predicted target genes are enriched in known breast cancer driver genes and transcription factors.
79 target genes that fulfil at least one of the following criteria: are targeted by more than one independent signal, are known driver genes, transcription factor genes, or their binding sites (ChIP-Seq BS) or consensus motif (TF Motif) are significantly overlapped by CCVs. *Genes with published functional follow up.
Figure 5
Figure 5. Predicted target genes by phenotype and significantly enriched pathways.
(a) Venn diagram showing the associated phenotype (ER-positive, ER-negative, ER-neutral) for the Level 1 target genes, predicted by the CCVs and HPPVs. * ER-positive or ER-negative target genes also targeted by ER-neutral signals. (b) Heatmap showing clustering of pathway themes over-represented by INQUISIT Level 1 target genes. Color represents the relative number of genes per phenotype within enriched pathways, grouped by common themes. ER-positive, ER-negative, ER-neutral, and all phenotypes together (strong).

References

    1. Milne RL, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet. 2017;49:1767–1778. - PMC - PubMed
    1. Michailidou K, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–+. - PMC - PubMed
    1. Ghoussaini M, et al. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun. 2014;4:4999. - PMC - PubMed
    1. Wyszynski A, et al. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet. 2016;25:3863–3876. - PMC - PubMed
    1. Guo X, et al. Fine-scale mapping of the 4q24 locus identifies two independent loci associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2015;24:1680–91. - PMC - PubMed

Publication types

Substances