Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2020 Jan 8:9:e53832.
doi: 10.7554/eLife.53832.

How nitric oxide helps update memories

Affiliations
Comment

How nitric oxide helps update memories

Daniel Je Green et al. Elife. .

Abstract

Some dopaminergic neurons release both dopamine and nitric oxide to increase the flexibility of olfactory memories.

Keywords: D. melanogaster; associative learning; cotransmitter; dopamine; memory dynamics; mushroom body; neuroscience; nitric oxide.

PubMed Disclaimer

Conflict of interest statement

DG, AL No competing interests declared

Figures

Figure 1.
Figure 1.. Nitric oxide signaling in the mushroom body.
(A) Schematic diagram of the Drosophila melanogaster mushroom body showing the compartments innervated by dopaminergic neurons (DANs) that induce positive memories (light/dark blue) and negative memories (light/dark pink), and the neurons studied by Aso et al.: PAM-γ5/PAM-β’2a (dark blue) and PPL1-γ1pedc (dark pink). (B) Nitric oxide synthase (NOS) generates nitric oxide (NO, red dots) in a dopaminergic neuron (DAN, top). NO diffuses into the Kenyon cell (KC, bottom), where it binds soluble guanylate cyclase (sGC) to produce an ‘inverted’ memory. At the same time, dopamine (DA, blue dots) is released from the dopaminergic neuron via synaptic vesicles, creating a ‘normal’ memory. (C) NO-induced memories (middle) have the opposite valence to dopamine-induced memories (top) and are slower to both form and decay. Dopamine and NO interact (bottom) to produce memories that form and decay quickly and are easily updated.

Comment on

References

    1. Amin H, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. Current Opinion in Insect Science. 2019;36:9–17. doi: 10.1016/j.cois.2019.06.003. - DOI - PubMed
    1. Aso Y, Siwanowicz I, Bräcker L, Ito K, Kitamoto T, Tanimoto H. Specific dopaminergic neurons for the formation of labile aversive memory. Current Biology. 2010;20:1445–1451. doi: 10.1016/j.cub.2010.06.048. - DOI - PMC - PubMed
    1. Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. Three dopamine pathways induce aversive odor memories with different stability. PLOS Genetics. 2012;8:e1002768. doi: 10.1371/journal.pgen.1002768. - DOI - PMC - PubMed
    1. Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife. 2016;5:e16135. doi: 10.7554/eLife.16135. - DOI - PMC - PubMed
    1. Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife. 2019;8:e49257. doi: 10.7554/eLife.49257. - DOI - PMC - PubMed