Medical Conditions Predictive of Self-Reported Poor Health: Retrospective Cohort Study
- PMID: 31913130
- PMCID: PMC6996740
- DOI: 10.2196/13018
Medical Conditions Predictive of Self-Reported Poor Health: Retrospective Cohort Study
Abstract
Background: Identifying the medical conditions that are associated with poor health is crucial to prioritize decisions for future research and organizing care. However, assessing the burden of disease in the general population is complex, lengthy, and expensive. Claims databases that include self-reported health status can be used to assess the impact of medical conditions on the health in a population.
Objective: This study aimed to identify medical conditions that are highly predictive of poor health status using claims databases.
Methods: To determine the medical conditions most highly predictive of poor health status, we used a retrospective cohort study using 2 US claims databases. Subjects were commercially insured patients. Health status was measured using a self-report health status response. All medical conditions were included in a least absolute shrinkage and selection operator regression model to assess which conditions were associated with poor versus excellent health.
Results: A total of 1,186,871 subjects were included; 61.64% (731,587/1,186,871) reported having excellent or very good health. The leading medical conditions associated with poor health were cancer-related conditions, demyelinating disorders, diabetes, diabetic complications, psychiatric illnesses (mood disorders and schizophrenia), sleep disorders, seizures, male reproductive tract infections, chronic obstructive pulmonary disease, cardiomyopathy, dementia, and headaches.
Conclusions: Understanding the impact of disease in a commercially insured population is critical to identify subjects who may be at risk for reduced productivity and job loss. Claims database studies can measure the impact of medical conditions on the health status in a population and to assess changes overtime and could limit the need to collect prospective collection of information, which is slow and expensive, to assess disease burden. Leading medical conditions associated with poor health in a commercially insured population were the ones associated with high burden of disease such as cancer-related conditions, demyelinating disorders, diabetes, diabetic complications, psychiatric illnesses (mood disorders and schizophrenia), infections, chronic obstructive pulmonary disease, cardiomyopathy, and dementia. However, sleep disorders, seizures, male reproductive tract infections, and headaches were also part of the leading medical conditions associated with poor health that had not been identified before as being associated with poor health and deserve more attention.
Keywords: burden of illness; claims database studies; poor health.
©M Soledad Cepeda, Jenna Reps, David M Kern, Paul Stang. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 08.01.2020.
Conflict of interest statement
Conflicts of Interest: All authors are employees of Janssen Research & Development, LCC; however, there is no assessment or mention of any products in this study.
References
-
- Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, Dellavalle R, Danaei G, Ezzati M, Fahimi A, Flaxman D, Foreman. Gabriel S, Gakidou E, Kassebaum N, Khatibzadeh S, Lim S, Lipshultz SE, London S, Lopez. MacIntyre MF, Mokdad AH, Moran A, Moran AE, Mozaffarian D, Murphy T, Naghavi M, Pope C, Roberts T, Salomon J, Schwebel DC, Shahraz S, Sleet DA, Murray. Abraham J, Ali MK, Atkinson C, Bartels DH, Bhalla K, Birbeck G, Burstein R, Chen H, Criqui MH, Dahodwala. Jarlais. Ding EL, Dorsey ER, Ebel BE, Ezzati M, Fahami. Flaxman S, Flaxman AD, Gonzalez-Medina D, Grant B, Hagan H, Hoffman H, Kassebaum N, Khatibzadeh S, Leasher JL, Lin J, Lipshultz SE, Lozano R, Lu Y, Mallinger L, McDermott MM, Micha R, Miller TR, Mokdad AA, Mokdad AH, Mozaffarian D, Naghavi M, Narayan KMV, Omer SB, Pelizzari PM, Phillips D, Ranganathan D, Rivara FP, Roberts T, Sampson U, Sanman E, Sapkota A, Schwebel DC, Sharaz S, Shivakoti R, Singh GM, Singh D, Tavakkoli M, Towbin JA, Wilkinson JD, Zabetian A, Murray. Abraham J, Ali MK, Alvardo M, Atkinson C, Baddour LM, Benjamin EJ, Bhalla K, Birbeck G, Bolliger I, Burstein R, Carnahan E, Chou D, Chugh SS, Cohen A, Colson KE, Cooper LT, Couser W, Criqui MH, Dabhadkar KC, Dellavalle RP, Jarlais. Dicker D, Dorsey ER, Duber H, Ebel BE, Engell RE, Ezzati M, Felson DT, Finucane MM, Flaxman S, Flaxman AD, Fleming T, Foreman. Forouzanfar MH, Freedman G, Freeman MK, Gakidou E, Gillum RF, Gonzalez-Medina D, Gosselin R, Gutierrez HR, Hagan H, Havmoeller R, Hoffman H, Jacobsen KH, James SL, Jasrasaria R, Jayarman S, Johns N, Kassebaum N, Khatibzadeh S, Lan Q, Leasher JL, Lim S, Lipshultz SE, London S, Lopez. Lozano R, Lu Y, Mallinger L, Meltzer M, Mensah GA, Michaud C, Miller TR, Mock C, Moffitt TE, Mokdad AA, Mokdad AH, Moran A, Naghavi M, Narayan KMV, Nelson RG, Olives C, Omer SB, Ortblad K, Ostro B, Pelizzari PM, Phillips D, Raju M, Razavi H, Ritz B, Roberts T, Sacco RL, Salomon J, Sampson U, Schwebel DC, Shahraz S, Shibuya K, Silberberg D, Singh JA, Steenland K, Taylor JA, Thurston GD, Vavilala MS, Vos T, Wagner GR, Weinstock MA, Weisskopf MG, Wulf S, Murray. US Burden of Disease Collaborators The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. J Am Med Assoc. 2013 Aug 14;310(6):591–608. doi: 10.1001/jama.2013.13805. http://europepmc.org/abstract/MED/23842577 - DOI - PMC - PubMed
-
- Bertram MY, Sweeny K, Lauer JA, Chisholm D, Sheehan P, Rasmussen B, Upreti SR, Dixit LP, George K, Deane S. Investing in non-communicable diseases: an estimation of the return on investment for prevention and treatment services. Lancet. 2018 May 19;391(10134):2071–8. doi: 10.1016/S0140-6736(18)30665-2. - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
