Validation of a New Rapid Detection Test for Detection of Neisseria meningitidis A/C/W/X/Y Antigens in Cerebrospinal Fluid
- PMID: 31915288
- PMCID: PMC7041570
- DOI: 10.1128/JCM.01699-19
Validation of a New Rapid Detection Test for Detection of Neisseria meningitidis A/C/W/X/Y Antigens in Cerebrospinal Fluid
Abstract
Meningococcal meningitis remains a life-threatening disease worldwide, with high prevalence in the sub-Saharan meningitis belt. A rapid diagnosis is crucial for implementing adapted antimicrobial treatment. We describe the performances of a new immunochromatographic test (MeningoSpeed, BioSpeedia, France) for detecting and grouping Neisseria meningitidis Cerebrospinal fluids (CSFs) were collected from 5 African countries and France. For the rapid diagnostic test (RDT), the CSF sample was deposited on each of the 3 cassettes for a total volume of 90 μl. The results of the RDT were compared to those of a reference multiplex PCR assay detecting the major serogroups of N. meningitidis on 560 CSF specimens. Five specimens were found uninterpretable by RDT (0.9%). The results of interpretable specimens were as follows: 305 positive and 212 negative samples by both techniques, 14 positive by PCR only, and 24 positive by RDT only (sensitivity, specificity, and positive and negative predictive values of 92.7%, 93.8%, 95.6%, and 89.8%, respectively, with an accuracy of 93.2% and a kappa test of 0.89; P < 0.05). From 319 samples positive by PCR for serogroups A, C, W, X, or Y, the grouping results were concordant for 299 specimens (sensitivity of 93.0%, 74.4%, 98.1%, 100%, and 83.3% for serogroups A, C, W, X, and Y, respectively). The MeningoSpeed RDT exhibited excellent performances for the rapid detection of N. meningitidis antigens. It can be stored at room temperature, requires a minimal amount of CSF, is performed in 15 minutes or less, and is easy to use at bedside.
Keywords: Neisseria meningitidis; cerebrospinal fluid; rapid diagnostic test; validation.
Copyright © 2020 American Society for Microbiology.
Figures
References
-
- Harrison LH, Pelton SI, Wilder-Smith A, Holst J, Safadi MAP, Vazquez JA, Taha M-K, LaForce FM, von Gottberg A, Borrow R, Plotkin SA. 2011. The Global Meningococcal Initiative: recommendations for reducing the global burden of meningococcal disease. Vaccine 29:3363–3371. doi:10.1016/j.vaccine.2011.02.058. - DOI - PubMed
-
- Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, Christensen H, Climent Y, De Wals P, Dinleyici EC, Echaniz-Aviles G, Hakawi A, Kamiya H, Karachaliou A, Lucidarme J, Meiring S, Mironov K, Sáfadi MAP, Shao Z, Smith V, Steffen R, Stenmark B, Taha M-K, Trotter C, Vázquez JA, Zhu B. 2019. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 18:15–30. doi:10.1080/14760584.2019.1557520. - DOI - PubMed
-
- Daugla DM, Gami JP, Gamougam K, Naibei N, Mbainadji L, Narbé M, Toralta J, Kodbesse B, Ngadoua C, Coldiron ME, Fermon F, Page AL, Djingarey MH, Hugonnet S, Harrison OB, Rebbetts LS, Tekletsion Y, Watkins ER, Hill D, Caugant DA, Chandramohan D, Hassan-King M, Manigart O, Nascimento M, Woukeu A, Trotter C, Stuart JM, Maiden M, Greenwood BM. 2014. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study. Lancet 383:40–47. doi:10.1016/S0140-6736(13)61612-8. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources