Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 5;12(5):5361-5380.
doi: 10.1021/acsami.9b20384. Epub 2020 Jan 22.

Organic Electrode Materials for Metal Ion Batteries

Affiliations

Organic Electrode Materials for Metal Ion Batteries

John J Shea et al. ACS Appl Mater Interfaces. .

Abstract

Organic and polymer materials have been extensively investigated as electrode materials for rechargeable batteries because of the low cost, abundance, environmental benignity, and high sustainability. To date, organic electrode materials have been applied in a large variety of energy storage devices, including nonaqueous Li-ion, Na-ion, K-ion, dual-ion, multivalent-metal, aqueous, all-solid-state, and redox flow batteries, because of the universal properties of organic electrode materials. Moreover, some organic materials enable the batteries to be operated in the extreme conditions, such as a wide temperature range (-70 to 150 °C), a wide pH range, and in the presence of O2. As a guidance for the research in organic batteries, this Review focuses on the reaction mechanisms and applications of organic electrode materials. Six categories of reaction mechanisms and the applications of organic and polymer materials in various rechargeable batteries are discussed to provide an overview of the state-of-the-art organic batteries.

Keywords: energy storage; organic batteries; organic electrode materials; polymer materials; reaction mechanisms; rechargeable batteries.

PubMed Disclaimer

LinkOut - more resources