Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Jan 9;11(1):163.
doi: 10.1038/s41467-019-13690-5.

Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

Sonia Shah  1   2   3 Albert Henry  2   3   4 Carolina Roselli  5   6 Honghuang Lin  7   8 Garðar Sveinbjörnsson  9 Ghazaleh Fatemifar  3   4   10 Åsa K Hedman  11 Jemma B Wilk  12 Michael P Morley  13 Mark D Chaffin  5 Anna Helgadottir  9 Niek Verweij  5   6 Abbas Dehghan  14   15 Peter Almgren  16 Charlotte Andersson  8   17 Krishna G Aragam  5   18   19 Johan Ärnlöv  20   21 Joshua D Backman  22 Mary L Biggs  23   24 Heather L Bloom  25 Jeffrey Brandimarto  13 Michael R Brown  26 Leonard Buckbinder  12 David J Carey  27 Daniel I Chasman  28   29 Xing Chen  12 Xu Chen  30 Jonathan Chung  22 William Chutkow  31 James P Cook  32 Graciela E Delgado  33 Spiros Denaxas  3   4   10   34   35 Alexander S Doney  36 Marcus Dörr  37   38 Samuel C Dudley  39 Michael E Dunn  40 Gunnar Engström  16 Tõnu Esko  5   41 Stephan B Felix  37   38 Chris Finan  2   3 Ian Ford  42 Mohsen Ghanbari  43 Sahar Ghasemi  38   44 Vilmantas Giedraitis  45 Franco Giulianini  28 John S Gottdiener  46 Stefan Gross  37   38 Daníel F Guðbjartsson  9   47 Rebecca Gutmann  48 Christopher M Haggerty  27 Pim van der Harst  6   49   50 Craig L Hyde  12 Erik Ingelsson  51   52   53   54 J Wouter Jukema  55   56 Maryam Kavousi  43 Kay-Tee Khaw  57 Marcus E Kleber  33 Lars Køber  58 Andrea Koekemoer  59 Claudia Langenberg  60 Lars Lind  61 Cecilia M Lindgren  5   62   63 Barry London  64 Luca A Lotta  60 Ruth C Lovering  2   3 Jian'an Luan  60 Patrik Magnusson  30 Anubha Mahajan  63 Kenneth B Margulies  13 Winfried März  32   65   66 Olle Melander  67 Ify R Mordi  36 Thomas Morgan  31   68 Andrew D Morris  69 Andrew P Morris  32   63 Alanna C Morrison  26 Michael W Nagle  12 Christopher P Nelson  59 Alexander Niessner  70 Teemu Niiranen  71   72 Michelle L O'Donoghue  73 Anjali T Owens  13 Colin N A Palmer  36 Helen M Parry  36 Markus Perola  71 Eliana Portilla-Fernandez  43   74 Bruce M Psaty  75   76 Regeneron Genetics CenterKenneth M Rice  23 Paul M Ridker  28   29 Simon P R Romaine  59 Jerome I Rotter  77 Perttu Salo  71 Veikko Salomaa  71 Jessica van Setten  78 Alaa A Shalaby  79 Diane T Smelser  27 Nicholas L Smith  76   80   81 Steen Stender  82 David J Stott  83 Per Svensson  84   85 Mari-Liis Tammesoo  41 Kent D Taylor  86 Maris Teder-Laving  41 Alexander Teumer  38   44 Guðmundur Thorgeirsson  9   87 Unnur Thorsteinsdottir  9   88 Christian Torp-Pedersen  89   90   91 Stella Trompet  55   92 Benoit Tyl  93 Andre G Uitterlinden  43   94 Abirami Veluchamy  36 Uwe Völker  38   95 Adriaan A Voors  7 Xiaosong Wang  31 Nicholas J Wareham  60 Dawn Waterworth  96 Peter E Weeke  58 Raul Weiss  97 Kerri L Wiggins  24 Heming Xing  31 Laura M Yerges-Armstrong  96 Bing Yu  26 Faiez Zannad  98 Jing Hua Zhao  60 Harry Hemingway  3   4   10   99 Nilesh J Samani  59 John J V McMurray  99 Jian Yang  1   100 Peter M Visscher  1   100 Christopher Newton-Cheh  5   19   101 Anders Malarstig  11   12 Hilma Holm  9 Steven A Lubitz  5   102 Naveed Sattar  99 Michael V Holmes  103   104   105 Thomas P Cappola  13 Folkert W Asselbergs  2   3   78 Aroon D Hingorani  2   3 Karoline Kuchenbaecker  106   107 Patrick T Ellinor  5   102 Chim C Lang  36 Kari Stefansson  9   88 J Gustav Smith  5   108   109 Ramachandran S Vasan  8   110 Daniel I Swerdlow  2 R Thomas Lumbers  111   112   113   114
Collaborators, Affiliations
Meta-Analysis

Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

Sonia Shah et al. Nat Commun. .

Abstract

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.

PubMed Disclaimer

Conflict of interest statement

J.B.W., L.B., Xing Chen, C.L.H., M.W.N. and A. Malarstig are current or former employee of Pfizer who may hold Pfizer stock and/or stock options. J.D.B. and J.C. are employees of Regeneron Genetics Center. M.E.D. is an employee of Regeneron Pharmaceuticals. W.M. reports grants and personal fees from Siemens Diagnostics, grants and personal fees from Aegerion Pharmaceuticals, grants and personal fees from AMGEN, grants and personal fees from Astrazeneca, grants and personal fees from Danone Research, personal fees from Hoffmann LaRoche, personal fees from MSD, grants and personal fees from Pfizer, personal fees from Sanofi, personal fees from Synageva, grants and personal fees from BASF, grants from Abbott Diagnostics, grants and personal fees from Numares AG, grants and personal fees from Berlin-Chemie, employment with Synlab Holding Deutschland GmbH, all outside the submitted work. M.L.O. reports grant support from GlaxoSmithKline, Eisai, Janssen, Merck and AstraZeneca. B.M.P. serves on the DSMB of a clinical trial funded by Zoll LifeCor and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. V.S. participated in a conference trip sponsored by Novo Nordisk and received a honorarium from the same source for participating in an advisory board meeting. He also has ongoing research collaboration with Bayer Ltd. B.T. is a full-time employee of Servier. S.A.L. receives sponsored research support from Bristol Myers Squibb/Pfizer, Bayer AG and Boehringer Ingelheim, and has consulted for Abbott, Quest Diagnostics and Bristol Myers Squibb/Pfizer. M.V.H. has collaborated with Boehringer Ingelheim in research, and in accordance with the policy of the The Clinical Trial Service Unit and Epidemiological Studies Unit (University of Oxford), did not accept any personal payment. P.T.E. receives sponsored research support from Bayer AG, and has consulted with Bayer AG, Novartis and Quest Diagnostics. D.I.S. is a full-time employee of BenevolentAI. R.T.L. has received research grants from Pfizer. The remaining authors declare no competing interest.

Figures

Fig. 1
Fig. 1. Study design and analysis workflow.
Overview of study design to identify and characterise heart failure-associated risk loci and for secondary cross-trait genome-wide analyses. GWAS, genome-wide association study; QTL, quantitative trait locus; MAGMA, Multi-marker Analysis of GenoMic Annotation; SNP, single-nucleotide polymorphism; mtCOJO, multi-trait-based conditional and joint analysis.
Fig. 2
Fig. 2. Manhattan plot of genome-wide heart failure associations.
The x-axis represents the genome in physical order; the y-axis shows −log10 P values for individual variant association with heart failure risk from the meta-analysis (n = 977,323). Suggestive associations at a significance level of P < 1 × 10−5 are indicated by the blue line, while genome-wide significance at P < 5 × 10−8 is indicated by the red line. Meta-analysis was performed using a fixed-effect inverse variance-weighted model. Independent genome-wide significant variants are annotated with the nearest gene(s).
Fig. 3
Fig. 3. Associations of HF risk variants with traits relating to disease subtypes and risk factors.
This bubble plot shows associations between the identified HF loci and risk factors and quantitative imaging traits, using summary estimates from UK Biobank (DCM, dilated cardiomyopathy) and published GWAS summary statistics. Number in bracket represents sample size (for quantitative traits) or number of cases (for binary traits) used to derive the GWAS summary statistics. The size of the bubble represents the absolute Z-score for each trait, with the direction oriented towards the HF risk allele. Red/blue indicates a positive/negative cross-trait association (i.e., increase/decrease in disease risk or increase/decrease in continuous trait). We accounted for family-wise error rate at 0.05 by Bonferroni correction for the ten traits tested per HF locus (P < 4.5e-4); traits meeting this threshold of significance for association are indicated by dark colour shading. Agglomerative hierarchical clustering of variants was performed using the complete linkage method, based on Euclidian distance. Where a sentinel variant was not available for all traits, a common proxy was selected (bold text). For the LPA locus, associations for the more common of the two variants at this locus are shown. Bold text represents variants whose estimates are plotted, upon which we performed hierarchical agglomerative clustering using the complete linkage method based on Euclidian distance. FS, fractional shortening; LVD, left ventricular dimension; DCM, dilated cardiomyopathy; AF, atrial fibrillation; CAD, coronary artery disease; LDL-C, low-density lipoprotein cholesterol; T2D, type 2 diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Fig. 4
Fig. 4. Conditional Mendelian randomisation analyses of HF risk factors.
Forest plot of HF risk factors with significant causal effect HF risk estimated using Mendelian randomisation, implemented with GSMR. Diamonds represent the odds ratio and the error bars indicate the 95% confidence interval. The unadjusted estimates represent the risk of HF as estimated from the HF GWAS data, while the adjusted estimates represent risk of HF conditioned, using GWAS summary statistics for atrial fibrillation (adjusted for AF) or coronary artery disease (adjusted for CAD) estimated using the mtCOJO method. For binary traits (coronary artery disease, atrial fibrillation and type 2 diabetes), the MR estimates represent average causal effect per natural-log odds increase in the trait risk. For continuous traits, the MR estimates represent average causal effect per standard deviation increase in the reported unit of the trait. LDL, low-density lipoprotein; HDL, high-density lipoprotein; CAD, coronary artery disease; AF, atrial fibrillation.

References

    1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016;13:368–378. doi: 10.1038/nrcardio.2016.25. - DOI - PMC - PubMed
    1. Roger VL, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344. doi: 10.1001/jama.292.3.344. - DOI - PubMed
    1. Ponikowski P, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. - DOI - PubMed
    1. Kenchaiah S, et al. Obesity and the risk of heart failure. N. Engl. J. Med. 2002;347:305–313. doi: 10.1056/NEJMoa020245. - DOI - PubMed
    1. Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ. Res. 2013;113:660–675. doi: 10.1161/CIRCRESAHA.113.300282. - DOI - PubMed

Publication types

MeSH terms