Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 27:12:3967-3979.
doi: 10.2147/IDR.S230303. eCollection 2019.

Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran

Affiliations

Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran

Arezoo Mirzaei et al. Infect Drug Resist. .

Abstract

Purpose: Proteus mirabilis is one of the most important agents of urinary tract infection (UTI). As there are limited data abou the pathogenicity P. mirabilis isolated from Iran, we investigated the virulence characteristics and antibiotic resistance in the isolates. Finally, the genotypic patterns were evaluated by Pulse field gel electrophoresis (PFGE).

Methods: A total of 110 isolates of P. mirabilis causing UTIs were isolated from patients in Tehran, Iran. The virulence characteristics and antimicrobial susceptibility were assayed using phenotypic methods. Extended-spectrum β-lactamases (ESBLs) production was assayed by the combination disk diffusion test (CDDT). Presence of virulence genes and antimicrobial-resistant genes was detected by Polymerase chain reaction (PCR). Finally, thirty-three isolates were selected for PFGE.

Results: All isolates showed the ability of biofilm and hemolysin formation. Antibiotic resistance ranged from 59.1% about cotrimoxazole to 2.7% about amoxicillin-clavulanic acid. Sixteen (14.5%) of the isolates were classified as multi-drug resistant (MDR). All isolates amplified mrpH, mrpA, pmfA, ureG and hpmA genes. Furthermore, the prevalence of zapA, fliC, ptaA, and ucaA genes was 98.2%, 98.2%, 95.5%, and 95.5%, respectively. The prevalence of plasmid-mediated quinolone resistance (PMQR) genes was 4.5% and 0.9% for aac(6')-Ib-cr and qnrA, respectively. Twenty-eight pulsotypes were detected among the 33 isolates by PFGE that pulsotypes 1, 2 and 4 with two isolates and pulsotype 3 with three isolates were the most prevalent ones.

Conclusion: It was found that the P. mirabilis isolates had high frequency of virulence factors. In addition, antibiotic resistance to some antibiotics and also production of ESBLs is alarming and shows the need for hygienic procedures to prevent the dissemination of antibiotic resistance. Although PFGE showed genetic diversity among the isolates, finding of several pulsotypes among the isolates should be considered an alarm to prevent these infections in hospital environments.

Keywords: MDR; PFGE; Proteus mirabilis; antibiotic resistance; urinary tract infection; virulence characteristics.

PubMed Disclaimer

Conflict of interest statement

Prof. Dr. Saeid Bouzari report grants and personal fees from Pasteur Institute of Iran, Tehran, Iran, during the conduct of the study as well as grants and personal fees from Pasteur Institute of Iran, Tehran, outside the submitted work. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
Distribution of P. mirabilis isolates according to the age and gender of UTI patients.
Figure 2
Figure 2
PFGE results of the selected P. mirabilis isolates. Dendrogram of PFGE was constructed based on UPGMA by using Dice coefficient with a 1.0% band position tolerance. The scores above the dendrogram show the percentage of similarity, and the solid line indicates 80% similarity. Notes: P1-P4, Pulsotypes 1–4.

References

    1. Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3(5). doi:10.1128/microbiolspec.UTI-0017-2013 - DOI - PMC - PubMed
    1. Armbruster CE, Mobley HL. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol. 2012;10(11):743–754. doi:10.1038/nrmicro2890 - DOI - PMC - PubMed
    1. Armbruster CE, Mobley HL, Pearson MM. Pathogenesis of Proteus mirabilis infection. EcoSal Plus. 2018;8(1). doi:10.1128/ecosalplus.ESP-0009-2017 - DOI - PMC - PubMed
    1. Luzzaro F, Mezzatesta M, Mugnaioli C, et al. Trends in production of extended-spectrum β-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J Clin Microbiol. 2006;44(5):1659–1664. doi:10.1128/JCM.44.5.1659-1664.2006 - DOI - PMC - PubMed
    1. Nucleo E, Fugazza G, Migliavacca R, et al. Differences in biofilm formation and aggregative adherence between β-lactam susceptible and β-lactamases producing P. mirabilis clinical isolates. New Microbiol. 2010;33(1):37–45. - PubMed

LinkOut - more resources