Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar:108:110432.
doi: 10.1016/j.msec.2019.110432. Epub 2019 Nov 15.

Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics

Affiliations

Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics

Nooshin Zandi et al. Mater Sci Eng C Mater Biol Appl. 2020 Mar.

Abstract

Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and inner diameter of 180 ± 48 nm and 106 ± 30 nm, respectively. Thermal gravimetric analysis determines that the mass loss of the core-sheath fibers fall between the mass loss values of individual sheath and core fibers. Swelling studies indicate higher water absorption of the core-sheath mat compared to the separate sheath and core membranes. In vitro drug release studies in Phosphate Buffered Saline (PBS) determine sustained release of the therapeutics from the core-sheath structure. The release trails three stages including non-Fickian diffusion at the early stage followed by the Fickian diffusion mechanism. The present study shows a useful approach to design core-sheath nanofibrous membranes with controlled and programmable drug release profiles.

Keywords: Biodegradable polymer; Core-sheath; Dual drug release; Fibrous membrane; Nanocarrier; Protein.

PubMed Disclaimer

LinkOut - more resources