Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 10;20(1):39.
doi: 10.1186/s12889-020-8148-4.

Progression of the smoking epidemic in high-income regions and its effects on male-female survival differences: a cohort-by-age analysis of 17 countries

Affiliations

Progression of the smoking epidemic in high-income regions and its effects on male-female survival differences: a cohort-by-age analysis of 17 countries

Maarten Wensink et al. BMC Public Health. .

Abstract

Background: Of all lifestyle behaviours, smoking caused the most deaths in the last century. Because of the time lag between the act of smoking and dying from smoking, and because males generally take up smoking before females do, male and female smoking epidemiology often follows a typical double wave pattern dubbed the 'smoking epidemic'. How are male and female deaths from this epidemic differentially progressing in high-income regions on a cohort-by-age basis? How have they affected male-female survival differences?

Methods: We used data for the period 1950-2015 from the WHO Mortality Database and the Human Mortality Database on three geographic regions that have progressed most into the smoking epidemic: high-income North America, high-income Europe and high-income Oceania. We examined changes in smoking-attributable mortality fractions as estimated by the Preston-Glei-Wilmoth method by age (ages 50-85) across birth cohorts 1870-1965. We used these to trace sex differences with and without smoking-attributable mortality in period life expectancy between ages 50 and 85.

Results: In all three high-income regions, smoking explained up to 50% of sex differences in period life expectancy between ages 50 and 85 over the study period. These sex differences have declined since at least 1980, driven by smoking-attributable mortality, which tended to decline in males and increase in females overall. Thus, there was a convergence between sexes across recent cohorts. While smoking-attributable mortality was still increasing for older female cohorts, it was declining for females in the more recent cohorts in the US and Europe, as well as for males in all three regions.

Conclusions: The smoking epidemic contributed substantially to the male-female survival gap and to the recent narrowing of that gap in high-income North America, high-income Europe and high-income Oceania. The precipitous decline in smoking-attributable mortality in recent cohorts bodes somewhat hopeful. Yet, smoking-attributable mortality remains high, and therefore cause for concern.

Keywords: Health inequality; Life expectancy; Mortality; Sex differences; Smoking epidemic.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic diagram of smoking epidemic, after reference . Males (in blue) take up smoking (solid line) at a steady pace until smoking-attributable mortality surges (dashed line) and the proportion smoking starts to decline. Females (in red) take up smoking later than males and reach a lower maximum proportion smoking. Smoking-attributable mortality in females is the last to increase to significant proportions. An essential feature of the model is the large time gap between the act of smoking and dying from it
Fig. 2
Fig. 2
Cohort-by-age analysis of the proportion of overall mortality that is attributed to smoking. Each birth cohort is on a single vertical line. For males, ages are shaded from yellow (age 50) to turquoise (age 85). For females, ages are shaded from beige (age 50) to fuchsia (age 85). The more recent a cohort, the smaller the number of age groups for which data are available (recent cohorts have not yet reached the higher ages). Results given for high-income Europe (13 countries), high-income North America (2 countries) and high-income Oceania (2 countries)
Fig. 3
Fig. 3
Upper panel: Historical development of period life expectancy between ages 50 and 85 (e50 ∣ 85, in years) for males (blue) and females (red) with the observed mortality rates (solid), and when smoking-attributable mortality was omitted (dashed), for the three studied regions. Lower panel: Sex differences in period e50 ∣ 85 with observed mortality (total population), and when smoking-attributable mortality was removed, for the three studied regions

Similar articles

Cited by

References

    1. GBD 2015 Tobacco Collaborators MB. Fullman N, Ng M, et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017;389:1885–1906. doi: 10.1016/S0140-6736(17)30819-X. - DOI - PMC - PubMed
    1. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1459–1544. doi: 10.1016/S0140-6736(16)31012-1. - DOI - PMC - PubMed
    1. World Health Organization. WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. https://www.who.int/tobacco/global_report/2017/en/. Accessed 26 Jan 2019.
    1. Lopez AD, Collishaw NE, Piha T. A descriptive model of the cigarette epidemic in developed countries. Tob Control. 1994;3:242–247. doi: 10.1136/tc.3.3.242. - DOI
    1. Thun M, Peto R, Boreham J, Lopez AD. Stages of the cigarette epidemic on entering its second century. Tob Control. 2012;21:96–101. doi: 10.1136/tobaccocontrol-2011-050294. - DOI - PubMed