Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 1:317:108937.
doi: 10.1016/j.cbi.2020.108937. Epub 2020 Jan 8.

Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells

Affiliations

Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells

Jessica Dietrich et al. Chem Biol Interact. .

Abstract

The biotoxin okadaic acid (OA) is a lipophilic secondary metabolite of marine microalgae. Therefore, OA accumulates in the fatty tissue of various shellfish and may thus enter the food chain. The ingestion of OA via contaminated marine species can lead to the diarrhetic shellfish poisoning syndrome characterized by the occurrence of a series of acute gastrointestinal symptoms in humans. In addition, genotoxicity and tumor-promoting properties of OA might constitute a long-term threat to human health. In order to deepen our understanding of the molecular effects of OA, we compared long-term (14 d) and short-term (24 h and 48 h) apoptotic effects of the compound on human HepaRG hepatocarcinoma cells. Cells were treated either with single doses for 24 and 48 h, respectively, or seven times over a period of 14 d, so that the cumulated quantities of OA in the long-term approach were equal to the single doses upon short-term treatment. Both short-term treatment scenarios led to the induction of apoptosis. Specific caspase activation assays and transcriptional analysis of mRNAs encoding proteins involved in the regulation of apoptosis suggest that OA-induced apoptosis occurs presumably by activation of the intrinsic apoptotic pathway. In contrast, effects were much less pronounced in case of long-term treatment. This is possibly linked to cellular protective mechanisms against low amounts of toxins, e.g. transporter-mediated efflux. In conclusion, our results show a clear concentration- and time-dependency of OA-mediated apoptotic effects in HepaRG cells and contribute to the elucidation of molecular effects of OA.

Keywords: Caspase activation; HepaRG cells; Intrinsic apoptosis; Long-term effects; Okadaic acid.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources