Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:199:105585.
doi: 10.1016/j.jsbmb.2020.105585. Epub 2020 Jan 10.

Cholestenoic acid analogues as inverse agonists of the liver X receptors

Affiliations

Cholestenoic acid analogues as inverse agonists of the liver X receptors

Lautaro D Alvarez et al. J Steroid Biochem Mol Biol. 2020 May.

Abstract

Liver X Receptors (LXRs) are ligand dependent transcription factors activated by oxidized cholesterol metabolites (oxysterols) that play fundamental roles in the transcriptional control of lipid metabolism, cholesterol transport and modulation of inflammatory responses. In the last decade, LXRs have become attractive pharmacological targets for intervention in human metabolic diseases and thus, several efforts have concentrated on the development of synthetic analogues able to modulate LXR transcriptional response. In this sense, we have previously found that cholestenoic acid analogues with a modified side chain behave as LXR inverse agonists. To further investigate the structure-activity relationships and to explore how cholestenoic acid derivatives interact with the LXRs, we evaluated the LXR biological activity of new analogues containing a C24-C25 double bond. Furthermore, a microarray assay was performed to evaluate the recruitment of coregulators to recombinant LXR LBD upon ligand binding. Also, conventional and accelerated molecular dynamics simulations were applied to gain insight on the molecular determinants involved in the inverse agonism. As LXR inverse agonists emerge as very promising candidates to control LXR activity, the cholestenoic acid analogues here depicted constitute a new relevant steroidal scaffold to inhibit LXR action.

Keywords: Coregulators; Inverse agonists; Liver X receptor; Molecular dynamics simulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources