Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;23(3):453-465.
doi: 10.1007/s10123-020-00118-0. Epub 2020 Jan 13.

Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.)

Affiliations

Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.)

Yang Xu et al. Int Microbiol. 2020 Aug.

Abstract

Soil salinity is regarded as severe environmental stress that can change the composition of rhizosphere soil bacterial community and import a plethora of harms to crop plants. However, relatively little is known about the relationship between salt stress and root microbial communities in groundnuts. The goal of this study was to assess the effect of salt stress on groundnut growth performance and rhizosphere microbial community structure. Statistical analysis exhibited that salt stress indeed affected groundnut growth and pod yield. Further taxonomic analysis showed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Saccharibacteria, Chloroflexi, Acidobacteria, and Cyanobacteria. Among these bacteria, numbers of Cyanobacteria and Acidobacteria mainly increased, while that of Actinobacteria and Chloroflexi decreased after salt treatment via taxonomic and qPCR analysis. Moreover, Sphingomonas and Microcoleus as the predominant genera in salt-treated rhizosphere soils might enhance salt tolerance as plant growth-promoting rhizobacteria. Metagenomic profiling showed that series of sequences related to signaling transduction, posttranslational modification, and chaperones were enriched in the salt-treated soils, which may have implications for plant survival and salt tolerance. These data will help us better understand the symbiotic relationship between the dominant microbial community and groundnuts and form the foundation for further improvement of salt tolerance of groundnuts via modification of soil microbial community.

Keywords: 16S rRNA; Arachis hypogaea L.; Bacterial community; Rhizosphere; Salt stress.

PubMed Disclaimer

MeSH terms

LinkOut - more resources