Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 15;15(1):e0225958.
doi: 10.1371/journal.pone.0225958. eCollection 2020.

Microscopic distance from tumor invasion front to serosa might be a useful predictive factor for peritoneal recurrence after curative resection of T3-gastric cancer

Affiliations

Microscopic distance from tumor invasion front to serosa might be a useful predictive factor for peritoneal recurrence after curative resection of T3-gastric cancer

Shingo Togano et al. PLoS One. .

Erratum in

Abstract

Background: Peritoneal recurrence is one of the most frequent recurrent diseases in gastric cancer. Although the exposure of cancer cells to the serosal surface is considered a common risk factor for peritoneal recurrence, there are some cases of peritoneal recurrence without infiltration to the serosal surface even after curative surgery. This study sought to clarify the risk factors of peritoneal recurrence in the absence of invasion to the serosal surface.

Materials and methods: Ninety-six patients with gastric cancer who underwent curative surgery were enrolled. In all 96 cases, the depth of tumor invasion was subserosal (T3). The microscopic distance from the tumor invasion front to the serosa (DIFS) was measured using tissue slides by H&E staining and pan-cytokeratin staining. E-cadherin expression was evaluated by immunohistochemical staining.

Results: Among the 96 patients, 16 developed peritoneal recurrence after curative surgery. The DIFS of the tumors with peritoneal recurrence (156±220 μm) was significantly shorter (p = 0.011) than that without peritoneal recurrence (360±478 μm). Peritoneal recurrence was significantly correlated with DIFS ≤234 μm (p = 0.023), but not with E-cadherin expression. The prognosis of DIFS ≤234 μm was significantly poorer than that of DIFS >234 μm (log rank, p = 0.007). A multivariate analysis of the patients' five-year overall survival revealed that DIFS ≤234 μm and lymph node metastasis were significantly correlated with survival (p = 0.005, p = 0.032, respectively).

Conclusion: The measurement of the DIFS might be useful for the prediction of peritoneal recurrence in T3-gastric cancer patients after curative surgery.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. The inclusion criteria in flowchart.
The inclusion criteria were as follows; 1. histologically proven gastric adenocarcinoma; 2. the depth of tumor invasion was T3; 3. curative operation; 4. intraoperative peritoneal lavage cytology-negative (Fig 1).
Fig 2
Fig 2. The microscopic distance from the tumor invasion front to the serosa.
The microscopic distance from the tumor invasion front to the serosa (DIFS) was calculated by H&E staining and/or pan-cytokeratin staining. Pan-cytokeratin staining was used to determine the cancer cells at the invasion front.
Fig 3
Fig 3. Receiver operating characteristic (ROC) curve with the DIFS.
The cutoff value for DIFS was 234 μm.
Fig 4
Fig 4. E-cadherin staining.
E-cadherin was expressed mainly at the cell membrane.
Fig 5
Fig 5. Survival of the patients with gastric cancer.
The five-year overall survival of all patients (n = 96) based on the DIFS and on the E-cadherin expression. The Kaplan-Meier survival curve indicates that the five-year overall survival of the patients with a DIFS ≤234 μm was significantly worse than that of the patients with a DIFS >234 (p = 0.007). E-cadherin expression was not associated with the prognosis.

References

    1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–27. Epub 2015/07/17. 10.1001/jamaoncol.2015.0735 - DOI - PMC - PubMed
    1. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. The New England journal of medicine. 2007;357(18):1810–20. Epub 2007/11/06. 10.1056/NEJMoa072252 - DOI - PubMed
    1. Miki Y, Yashiro M, Ando K, Okuno T, Kitayama K, Masuda G, et al. Examination of cancer cells exposed to gastric serosa by serosal stamp cytology plus RT-PCR is useful for the identification of gastric cancer patients at high risk of peritoneal recurrence. Surgical oncology. 2017;26(4):352–8. Epub 2017/11/09. 10.1016/j.suronc.2017.07.008 - DOI - PubMed
    1. Maehara Y, Hasuda S, Koga T, Tokunaga E, Kakeji Y, Sugimachi K. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br J Surg. 2000;87(3):353–7. 10.1046/j.1365-2168.2000.01358.x - DOI - PubMed
    1. Hiratsuka M, Iwanaga T, Furukawa H, Yasuda T, Nakano H, Nakamori S, et al. [Important prognostic factors in surgically treated gastric cancer patients]. Gan To Kagaku Ryoho. 1995;22(5):703–8. - PubMed

Publication types

LinkOut - more resources