Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 4;12(9):10291-10298.
doi: 10.1021/acsami.9b19641. Epub 2020 Feb 21.

Magnetic Active Water Filter Membrane for Induced Heating to Remove Biofoulants

Affiliations

Magnetic Active Water Filter Membrane for Induced Heating to Remove Biofoulants

Hoang Nguyen et al. ACS Appl Mater Interfaces. .

Abstract

Filter membrane processes are water purification methods that use a partially permeable membrane to separate contaminants from drinking water and wastewater. Although highly effective, they suffer from biofouling due to the aggregation of bacteria and contaminants from the filtrate, thus rendering the membrane unusable. Consequently, the membrane needs to be replaced on a regular basis, which interrupts filtration operation, reduces throughput, and increases production cost. To address this issue, we have developed a new method to remove biofoulants via induction heating on a modified membrane with magnetite (Fe3O4) magnetic nanoparticles (MNPs) coating. Under applied alternating magnetic field (AMF), the surface temperature of the MNPs coating reaches 180 °C with a heating rate of 1.03 °C/s, which disintegrates biofoulants generated by model bacteria (Bacillus subtilis) and by those present in environmental water samples collected from a local lake. The heating process is capable of cleaning biofoulants for several cycles without damaging the filtration function of the membrane. Furthermore, magnetic induction heating on the modified membrane allows uniform high-intensity heat generation on a large surface in only a few minutes using inexpensive MNPs, which can potentially be scaled up for industrial applications.

Keywords: bacteria deactivation; biofoulants; induction heating; magnetic nanoparticles; membrane filtration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources