Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov;31(11):4600-4609.
doi: 10.1109/TNNLS.2019.2956390. Epub 2020 Oct 30.

Parameter Distribution Balanced CNNs

Parameter Distribution Balanced CNNs

Lixin Liao et al. IEEE Trans Neural Netw Learn Syst. 2020 Nov.

Abstract

Convolutional neural network (CNN) is the primary technique that has greatly promoted the development of computer vision technologies. However, there is little research on how to allocate parameters in different convolution layers when designing CNNs. We research mainly on revealing the relationship between CNN parameter distribution, i.e., the allocation of parameters in convolution layers, and the discriminative performance of CNN. Unlike previous works, we do not append more elements into the network, such as more convolution layers or denser short connections. We focus on enhancing the discriminative performance of CNN through varying its parameter distribution under strict size constraint. We propose an energy function to represent the CNN parameter distribution, which establishes the connection between the allocation of parameters and the discriminative performance of CNN. Extensive experiments with shallow CNNs on three public image classification data sets demonstrate that the CNN parameter distribution with a higher energy value will promote the model to obtain better performance. According to the motivated observation, the problem of finding the optimal parameter distribution can be transformed into an optimization problem of finding the biggest energy value. We present a simple yet effective guideline that uses balanced parameter distribution to design CNNs. Extensive experiments on ImageNet with three popular backbones, i.e., AlexNet, ResNet34, and ResNet101, demonstrate that the proposed guideline can make consistent improvements upon different baselines under strict size constraint.

PubMed Disclaimer

LinkOut - more resources