Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes
- PMID: 31945239
- DOI: 10.1111/cmi.13163
Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Keywords: Acanthamoeba; Dictyostelium; ABC transporter; amoeba; bacterial pathogenesis; carboxymycobactin; exochelin; iron acquisition; macrophage; mycobactin; pathogen vacuole; siderophore; tuberculosis.
© 2020 John Wiley & Sons Ltd.
Similar articles
-
Distinct Mycobacterium marinum phosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol.Cell Microbiol. 2019 Jun;21(6):e13008. doi: 10.1111/cmi.13008. Epub 2019 Feb 7. Cell Microbiol. 2019. PMID: 30656819
-
Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin.Chem Biol. 1998 Nov;5(11):631-45. doi: 10.1016/s1074-5521(98)90291-5. Chem Biol. 1998. PMID: 9831524
-
Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis.PLoS Pathog. 2015 Mar 27;11(3):e1004792. doi: 10.1371/journal.ppat.1004792. eCollection 2015 Mar. PLoS Pathog. 2015. PMID: 25815898 Free PMC article.
-
Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake.J Bacteriol. 2016 Aug 25;198(18):2399-409. doi: 10.1128/JB.00359-16. Print 2016 Sep 15. J Bacteriol. 2016. PMID: 27402628 Free PMC article. Review.
-
Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis.Biochimie. 2024 Dec;227(Pt A):37-60. doi: 10.1016/j.biochi.2024.06.006. Epub 2024 Jun 18. Biochimie. 2024. PMID: 38901792 Review.
Cited by
-
Microbial Siderophores: A New Insight on Healthcare Applications.BME Front. 2025 Mar 21;6:0112. doi: 10.34133/bmef.0112. eCollection 2025. BME Front. 2025. PMID: 40124737 Free PMC article. Review.
-
Mycobacterium abscessus Mutants with a Compromised Functional Link between the Type VII ESX-3 System and an Iron Uptake Mechanism Reliant on an Unusual Mycobactin Siderophore.Pathogens. 2022 Aug 23;11(9):953. doi: 10.3390/pathogens11090953. Pathogens. 2022. PMID: 36145386 Free PMC article.
-
Mycobacterium marinum as a model for understanding principles of mycobacterial pathogenesis.J Bacteriol. 2025 May 22;207(5):e0004725. doi: 10.1128/jb.00047-25. Epub 2025 Apr 30. J Bacteriol. 2025. PMID: 40304497 Free PMC article. Review.
-
Inter-kingdom signaling by the Legionella autoinducer LAI-1 involves the antimicrobial guanylate binding protein GBP.PLoS Pathog. 2025 Apr 29;21(4):e1013026. doi: 10.1371/journal.ppat.1013026. eCollection 2025 Apr. PLoS Pathog. 2025. PMID: 40300029 Free PMC article.
-
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens.Toxins (Basel). 2021 Jul 28;13(8):526. doi: 10.3390/toxins13080526. Toxins (Basel). 2021. PMID: 34437397 Free PMC article. Review.
References
REFERENCES
-
- Arafah, S., Kicka, S., Trofimov, V., Hagedorn, M., Andreu, N., Wiles, S., … Soldati, T. (2013). Setting up and monitoring an infection of Dictyostelium discoideum with mycobacteria. Methods in Molecular Biology, 983, 403-417.
-
- Arnold, F. M., Hohl, M., Remm, S., Koliwer-Brandl, H., Adenau, S., Chusri, S., … Seeger, M. A. (2018). A uniform cloning platform for mycobacterial genetics and protein production. Scientific Reports, 8, 9539.
-
- Aubry, A., Mougari, F., Reibel, F. and Cambau, E. (2017). Mycobacterium marinum. Microbiol Spectr, 5.
-
- Barisch, C., Paschke, P., Hagedorn, M., Maniak, M., & Soldati, T. (2015). Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cellular Microbiology, 17, 1332-1349.
-
- Barisch, C., & Soldati, T. (2017). Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie, 141, 54-61.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources