Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:2019:920-924.
doi: 10.1109/EMBC.2019.8857002.

Predicting Human Embryos' Implantation Outcome from a Single Blastocyst Image

Predicting Human Embryos' Implantation Outcome from a Single Blastocyst Image

Reza Moradi Rad et al. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul.

Abstract

Only one-third of embryo transfer cycles via invitro fertilization, the most common fertility treatment, leads to a clinical pregnancy. Identifying embryos with the highest potentials for transfer is an essential step to optimize in-vitro fertilization outcome. However, human embryos are complicated by nature and some of their developmental aspects has still remained a mystery to expert biologists. In this paper, the first-ever attempt is made to estimate probability of implantation using a single blastocyst image. First, a semantic segmentation system is proposed for human blastocyst components in microscopic images. Second, a multi-stream classification model is proposed for the prediction of embryos' implantation outcome. The proposed classification model features an architectural component, Compact-Contextualize-Calibrate (C3) to guide the feature extraction process and a slow-fusion strategy to learn cross-modality features. Experimental results confirm that the proposed method delivers the first-reported implantation outcome prediction via a single blastocyst image to date with a mean accuracy of 70.9%.

PubMed Disclaimer

LinkOut - more resources