Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:2019:961-965.
doi: 10.1109/EMBC.2019.8857831.

Machine learning for computer-aided polyp detection using wavelets and content-based image

Machine learning for computer-aided polyp detection using wavelets and content-based image

Michelle Viscaino et al. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul.

Abstract

The continuous growing of machine learning techniques, their capabilities improvements and the availability of data being continuously collected, recorded and updated, can enhance diagnosis stages by making it faster and more accurate than human diagnosis. In lower endoscopies procedures, most of the diagnosis relies on the capabilities and expertise of the physician. During medical training, physicians can be benefited from the assistance of algorithms able to automatically detect polyps, thus enhancing their diagnosis. In this paper, we propose a machine learning approach trained to detect polyps in lower endoscopies recordings with high accuracy and sensitivity, previously processed using wavelet transform for feature extraction. The propose system is validated using available datasets. From a set of 1132 images, our system showed a 97.9% of accuracy in diagnosing polyps, around 10% more efficient than other approaches using techniques with a low computational requirement previously published. In addition, the false positive rate was 0.03. This encouraging result can be also extended to other diagnosis.

PubMed Disclaimer

Publication types

LinkOut - more resources