Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:2019:1167-1170.
doi: 10.1109/EMBC.2019.8857123.

A hybrid glucose fuel cell based on electrodeposited carbon nanotubes and platinized carbon

A hybrid glucose fuel cell based on electrodeposited carbon nanotubes and platinized carbon

Tanmay Kulkami et al. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul.

Abstract

Herein, we report on a hybrid fuel cell using electrodeposited multi-walled carbon nanotubes (MWCNTs) as a bioanode template for the immobilization of pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and electrodeposited platinized screen printed carbon nanotubes as the cathode. By depositing these nanostructures, high surface area is realized, wherein efficient direct electron transfer and excellent bioelectrocatalytic performance is achieved. The hybrid fuel cell comprised Nafion/PQQ-GDH/MWCNTs as the bioanode and a platinized carbon as the cathode to oxidize the glucose fuel and reduce oxygen, respectively. The hybrid fuel cell generated an open circuit voltage and a short circuit current density of 345 mV and 352.48 μA/cm2, respectively. The maximum power density of 58.08 μW/cm2 at a cell voltage of 198.5 mV is achieved at physiological conditions. This hybrid glucose fuel cell may be helpful for exploiting novel nanostructure carbon and platinum derived electrode substrate framework that incorporates the advantages of both enzymatic and non-enzymatic glucose fuel cells. The method employed herein further shows promise in the development of biomedical power source to drive bio-implantable devices without the use of batteries.

PubMed Disclaimer

Publication types