Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:2019:6367-6370.
doi: 10.1109/EMBC.2019.8857019.

Hybrid Neural Network for Photoacoustic Imaging Reconstruction

Hybrid Neural Network for Photoacoustic Imaging Reconstruction

Hengrong Lan et al. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul.

Abstract

Photoacoustic imaging (PAI) is an emerging noninvasive imaging modality combining the advantages of ultrasound imaging and optical imaging. Image reconstruction is an essential topic in photoacoustic imaging, which is unfortunately an ill-posed problem due to the complex and unknown optical/acoustic parameters in tissue. Conventional algorithms used in photoacoustic imaging (e.g., delay-and-sum) provide a fast solution while many artifacts remain. Convolutional neural network (CNN) has shown state-of-the-art results in computer vision, and more and more work based on CNN has been studied in medical image processing recently. In this paper, we propose Y-Net: a CNN architecture to reconstruct the PA image by integrating both raw data and beamformed images as input. The network connected two encoders with one decoder path, which optimally utilizes more information from raw data and beamformed image. The results of the simulation showed a good performance compared with conventional deep-learning based algorithms and other model-based methods. The proposed Y-Net architecture has significant potential in medical image reconstruction beyond PAI.

PubMed Disclaimer