Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan 5;9(1):126.
doi: 10.3390/cells9010126.

TRPC Channels in the SOCE Scenario

Affiliations
Review

TRPC Channels in the SOCE Scenario

Jose J Lopez et al. Cells. .

Abstract

Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels that contribute to the modulation of a number of physiological functions in a variety of cell types. Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC. STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a relevant role modulating Orai1 channel function. This review summarizes the functional role of TRPC channels in the STIM1-Orai1 scenario.

Keywords: Orai1; STIM1; TRPC1; calcium influx; store-operated Ca2+ entry (SOCE).

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Milestones in the characterization of Ca2+ entry. In the early 1880s, Ringer revealed the functional role of Ca2+ entry in heart contraction. About a century later, store-operated Ca2+ entry (SOCE) was discovered and, by that time, transient receptor potential (TRP) channels were identified, first in Drosophila and then in mammals. In 2005 and 2006 STIM1 and Orai1, the key components of the Ca2+ release-activated Ca2+ (CRAC) channels, were identified, and canonical TRP (TRPC) channels were found to participate in a non-selective store-operated current together with STIM1 and Orai1. The model represents two alternatives for the involvement of TRPC in the store-operated channels.
Figure 2
Figure 2
Cartoon depicting the activation of TRPC1 channels upon Ca2+ store depletion. (a) In the resting state, TRPC1 shows both plasma membrane and cytosolic localization. (b) Upon Ca2+ store depletion, Ca2+ influx via Orai1 has been reported to induce the translocation of intracellularly-located TRPC1 to the plasma membrane where it might be activated by STIM1. The model shows two alternatives for functional (mediating Ca2+ entry for the translocation of TRPC1 to the plasma membrane; left panel) or direct participation of Orai1 in the activation of TRPC1 (forming a STIM1–Orai1–TRPC1 ternary complex; right panel).
Figure 3
Figure 3
Overview of the modulation of Orai1 by TRPC channels. Orai1 channel function might be positively or negatively regulated by TRPC channels in the vicinity. (a) Ca2+ and Na+ entry through TRPC channels might lead to membrane depolarization and thus attenuation of the electrical gradient that favors Ca2+ influx via Orai1. (b) Ca2+ entry via TRPC channels participates in global rises in [Ca2+]c, thus leading to Ca2+-dependent inactivation of Orai1 channels. (c) Some TRPC channels are required for Orai1 recycling at the plasma membrane.

References

    1. Ringer S. A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart. J. Physiol. 1883;4:29–42. doi: 10.1113/jphysiol.1883.sp000120. - DOI - PMC - PubMed
    1. Putney J.W., Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. doi: 10.1016/0143-4160(86)90026-6. - DOI - PubMed
    1. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992;355:353–356. doi: 10.1038/355353a0. - DOI - PubMed
    1. Parekh A.B., Putney J.W., Jr. Store-operated calcium channels. Physiol. Rev. 2005;85:757–810. doi: 10.1152/physrev.00057.2003. - DOI - PubMed
    1. Cosens D.J., Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969;224:285–287. doi: 10.1038/224285a0. - DOI - PubMed

Publication types