Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 16;11(1):312.
doi: 10.1038/s41467-019-14100-6.

A network analysis to identify mediators of germline-driven differences in breast cancer prognosis

Maria Escala-Garcia  1 Jean Abraham  2   3   4 Irene L Andrulis  5   6 Hoda Anton-Culver  7 Volker Arndt  8 Alan Ashworth  9 Paul L Auer  10   11 Päivi Auvinen  12   13   14 Matthias W Beckmann  15 Jonathan Beesley  16 Sabine Behrens  17 Javier Benitez  18   19 Marina Bermisheva  20 Carl Blomqvist  21   22 William Blot  23   24 Natalia V Bogdanova  25   26   27 Stig E Bojesen  28   29   30 Manjeet K Bolla  31 Anne-Lise Børresen-Dale  32   33 Hiltrud Brauch  34   35   36 Hermann Brenner  8   36   37 Sara Y Brucker  38 Barbara Burwinkel  39   40 Carlos Caldas  41   42 Federico Canzian  43 Jenny Chang-Claude  17   44 Stephen J Chanock  45 Suet-Feung Chin  46 Christine L Clarke  47 Fergus J Couch  48 Angela Cox  49 Simon S Cross  50 Kamila Czene  51 Mary B Daly  52 Joe Dennis  31 Peter Devilee  53   54 Janet A Dunn  55 Alison M Dunning  2 Miriam Dwek  56 Helena M Earl  4   57 Diana M Eccles  58 A Heather Eliassen  59   60 Carolina Ellberg  61 D Gareth Evans  62   63   64 Peter A Fasching  15   65 Jonine Figueroa  45   66   67 Henrik Flyger  68 Manuela Gago-Dominguez  69   70 Susan M Gapstur  71 Montserrat García-Closas  45   72 José A García-Sáenz  73 Mia M Gaudet  71 Angela George  74 Graham G Giles  75   76   77 David E Goldgar  78 Anna González-Neira  18 Mervi Grip  79 Pascal Guénel  80 Qi Guo  81 Christopher A Haiman  82 Niclas Håkansson  83 Ute Hamann  84 Patricia A Harrington  2 Louise Hiller  55 Maartje J Hooning  85 John L Hopper  76 Anthony Howell  86 Chiun-Sheng Huang  87 Guanmengqian Huang  84 David J Hunter  60   88   89 Anna Jakubowska  90   91 Esther M John  92 Rudolf Kaaks  17 Pooja Middha Kapoor  17   93 Renske Keeman  1 Cari M Kitahara  94 Linetta B Koppert  95 Peter Kraft  60   88 Vessela N Kristensen  32   33 Diether Lambrechts  96   97 Loic Le Marchand  98 Flavio Lejbkowicz  99 Annika Lindblom  100   101 Jan Lubiński  90 Arto Mannermaa  14   102   103 Mehdi Manoochehri  84 Siranoush Manoukian  104 Sara Margolin  105   106 Maria Elena Martinez  70   107 Tabea Maurer  44 Dimitrios Mavroudis  108 Alfons Meindl  109 Roger L Milne  75   76   110 Anna Marie Mulligan  111   112 Susan L Neuhausen  113 Heli Nevanlinna  114 William G Newman  62   63 Andrew F Olshan  115 Janet E Olson  116 Håkan Olsson  61 Nick Orr  117 Paolo Peterlongo  118 Christos Petridis  119 Ross L Prentice  10 Nadege Presneau  56 Kevin Punie  120 Dhanya Ramachandran  26 Gad Rennert  99 Atocha Romero  121 Mythily Sachchithananthan  47 Emmanouil Saloustros  122 Elinor J Sawyer  119 Rita K Schmutzler  123   124 Lukas Schwentner  125 Christopher Scott  116 Jacques Simard  126 Christof Sohn  127 Melissa C Southey  110   128 Anthony J Swerdlow  74   129 Rulla M Tamimi  59   60   88 William J Tapper  130 Manuel R Teixeira  131   132 Mary Beth Terry  133 Heather Thorne  134   135 Rob A E M Tollenaar  136 Ian Tomlinson  137   138 Melissa A Troester  115 Thérèse Truong  80 Clare Turnbull  74 Celine M Vachon  116 Lizet E van der Kolk  139 Qin Wang  31 Robert Winqvist  140   141 Alicja Wolk  83   142 Xiaohong R Yang  45 Argyrios Ziogas  7 Paul D P Pharoah  2   31 Per Hall  51   105 Lodewyk F A Wessels  143   144 Georgia Chenevix-Trench  16 Gary D Bader  6   145 Thilo Dörk  26 Douglas F Easton  2   31 Sander Canisius #  146   147 Marjanka K Schmidt #  148   149
Affiliations

A network analysis to identify mediators of germline-driven differences in breast cancer prognosis

Maria Escala-Garcia et al. Nat Commun. .

Abstract

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.

PubMed Disclaimer

Conflict of interest statement

A.Ashworth is a cofounder of Tango Therapeutics, Azkarra Therapeutics, and Ovibio, is an advisor for Gladiator, Prolynx, Bluestar, Earli and Genentech, reports receiving commercial research grants from AstraZeneca and SPARC, and has ownership interest in patents on the use of PARP inhibitors, held jointly with AstraZeneca. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Network analysis pipeline (see “Methods” for details).
a Cox models were used to estimate the association between each genetic variant and breast cancer-specific survival in 84,457 patients of the Breast Cancer Association Consortium (BCAC) dataset (discovery set). b The P values of the survival analyses for the genetic variants (blue diamonds) were used to compute gene scores using the Pascal algorithm. These gene scores were based on the maximum chi-squared signal within a window size of 50-kb around the gene region and accounted for linkage disequilibrium structure (depicted in a gradient blue scale). c The HotNet2 method was used to identify gene modules based on the −log10 P value of the computed gene scores. d The modules found by HotNet2 were filtered to obtain a selection of high-confidence germline-related prognostic modules (GRPMs). We constructed a polygenic hazard score (PHS) summarizing the prognostic effects of a set of selected genetic variants in the module. We then tested the association of this PHS with survival in both the discovery set (gray) and the independent set (orange). e We performed a functional characterization of the high-confidence GRPMs by studying the downstream transcriptional effects. For that, we used genotype and expression data from The Cancer Genome Atlas (TCGA). We computed the correlation between a GRPM’s polygenic hazard score and the expression of all available genes. Based on these correlation values, a gene set enrichment analysis assigned biological processes that were enriched among the genes most correlated with the prognostic variants in the GRPM.
Fig. 2
Fig. 2. Manhattan plots of the gene-level associations with breast cancer-specific survival.
Plots show the association in a all breast cancer cases (n = 84,457), b estrogen receptor (ER)-negative (n = 14,529), and c ER-positive (n = 55,701). The −log10 gene P values from the Pascal algorithm is shown on the y axis and genomic position on the x axis. The top significant genes and the most significant gene per chromosome (if −log10(P) > 3) are shown in red.
Fig. 3
Fig. 3. High-confidence germline-related prognostic modules (GRPMs).
The GRPM is shown at the center of the circles, surrounded by the biological processes enriched among the downstream transcriptional effects of each module. Three modules were found for estrogen receptor (ER)-negative breast cancer (ac) and one module was found for ER-positive breast cancer (d). a G-alpha signaling GRPMs. b Circadian clock GRPM. c Regulators of cell growth and angiogenesis GRPM. d Rho GTPases and apoptosis GRPM. e Plots illustrating the association between each GRPM’s PHS and 10-year breast cancer specific-survival in the discovery and independent sets. HR hazard ratio (per standard deviation of the PHS), CI confidence interval. The error bars show the 95% confidence interval. The confidence intervals shown are two sided, whereas the significance test performed was one sided (see “Methods”).
Fig. 4
Fig. 4. Genomic region 19p13.3 with the two genes GNA11 and GNA15.
The two G-alpha signaling high-confidence germline-related prognostic modules (GRPMs) identified in the estrogen receptor (ER)-negative subtype have a shared genetic signal in the same genomic region. a Top: −log10(P) for the association with survival (y axis) of all variants in the region 19p13.3 (y axis). Bottom: regression coefficients from the survival model for the genetic variants in the module’s polygenic hazard scores (PHSs). b Scatter plot comparing the two modules’ PHSs in the iCOGS independent validation set. PHS of the GNA11 GRPM on the x axis and PHS of the GNA15 GRPM on the y axis.

References

    1. Lindström LS, et al. Prognostic information of a previously diagnosed sister is an independent prognosticator for a newly diagnosed sister with breast cancer. Ann. Oncol. 2014;25:1966–1972. doi: 10.1093/annonc/mdu270. - DOI - PubMed
    1. Verkooijen HM, et al. Breast cancer prognosis is inherited independently of patient, tumor and treatment characteristics. Int. J. Cancer. 2012;130:2103–2110. doi: 10.1002/ijc.26206. - DOI - PubMed
    1. Michailidou K, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–94. doi: 10.1038/nature24284. - DOI - PMC - PubMed
    1. Escala-Garcia M, et al. Genome-wide association study of germline variants and breast cancer-specific mortality. Br. J. Cancer. 2019;120:647–657. doi: 10.1038/s41416-019-0393-x. - DOI - PMC - PubMed
    1. Guo Q, et al. Identification of novel genetic markers of breast cancer survival. JNCI J. Natl Cancer Inst. 2015;107:djv081–djv081. doi: 10.1093/jnci/djv081. - DOI - PMC - PubMed

Publication types

Substances

Grants and funding