Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Feb;16(2):100-112.
doi: 10.1038/s41584-019-0356-x. Epub 2020 Jan 16.

T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy

Affiliations
Review

T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy

Amir Sharabi et al. Nat Rev Rheumatol. 2020 Feb.

Abstract

T cell subsets are critically involved in the development of systemic autoimmunity and organ inflammation in systemic lupus erythematosus (SLE). Each T cell subset function (such as effector, helper, memory or regulatory function) is dictated by distinct metabolic pathways requiring the availability of specific nutrients and intracellular enzymes. The activity of these enzymes or nutrient transporters influences the differentiation and function of T cells in autoimmune responses. Data are increasingly emerging on how metabolic processes control the function of various T cell subsets and how these metabolic processes are altered in SLE. Specifically, aberrant glycolysis, glutaminolysis, fatty acid and glycosphingolipid metabolism, mitochondrial hyperpolarization, oxidative stress and mTOR signalling underwrite the known function of T cell subsets in patients with SLE. A number of medications that are used in the care of patients with SLE affect cell metabolism, and the development of novel therapeutic approaches to control the activity of metabolic enzymes in T cell subsets represents a promising endeavour in the search for effective treatment of systemic autoimmune diseases.

PubMed Disclaimer

References

    1. Kasper, I. R., Apostolidis, S. A., Sharabi, A. & Tsokos, G. C. Empowering regulatory T cells in autoimmunity. Trends Mol. Med. 22, 784–797 (2016). - PubMed - PMC
    1. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018). - PubMed - PMC
    1. Suárez-Fueyo, A., Bradley, S. J., Klatzmann, D. & Tsokos, G. C. T cells and autoimmune kidney disease. Nat. Rev. Nephrol. 16, 329–343 (2017).
    1. Perl, A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12, 169–182 (2016). - PubMed
    1. Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. 13, 280–290 (2017). - PubMed

MeSH terms

LinkOut - more resources