Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;44(2):286-294.
doi: 10.4093/dmj.2019.0016. Epub 2020 Jan 13.

Glucose Effectiveness from Short Insulin-Modified IVGTT and Its Application to the Study of Women with Previous Gestational Diabetes Mellitus

Affiliations

Glucose Effectiveness from Short Insulin-Modified IVGTT and Its Application to the Study of Women with Previous Gestational Diabetes Mellitus

Micaela Morettini et al. Diabetes Metab J. 2020 Apr.

Abstract

Background: This study aimed to design a simple surrogate marker (i.e., predictor) of the minimal model glucose effectiveness (SG), namely calculated SG (CSG), from a short insulin-modified intravenous glucose tolerance test (IM-IVGTT), and then to apply it to study women with previous gestational diabetes mellitus (pGDM).

Methods: CSG was designed using the stepwise model selection approach on a population of subjects (n=181) ranging from normal tolerance to type 2 diabetes mellitus (T2DM). CSG was then tested on a population of women with pGDM (n=57). Each subject underwent a 3-hour IM-IVGTT; women with pGDM were observed early postpartum and after a follow-up period of up to 7 years and classified as progressors (PROG) or non-progressors (NONPROG) to T2DM. The minimal model analysis provided a reference SG.

Results: CSG was described as CSG=1.06×10⁻²+5.71×10⁻²×KG/Gpeak, KG being the mean slope (absolute value) of loge glucose in 10-25- and 25-50-minute intervals, and Gpeak being the maximum of the glucose curve. Good agreement between CSG and SG in the general population and in the pGDM group, both at baseline and follow-up (even in PROG and NONPROG subgroups), was shown by the Bland-Altman plots (<5% observations outside limits of agreement), and by the test for equivalence (equivalence margin not higher than one standard deviation). At baseline, the PROG subgroup showed significantly lower SG and CSG values compared to the NONPROG subgroup (P<0.03).

Conclusion: CSG is a valid SG predictor. In the pGDM group, glucose effectiveness appeared to be impaired in women progressing to T2DM.

Keywords: Diabetes mellitus, type 2; Diabetes, gestational; Glucose metabolism disorders; Glucose tolerance test; Models, theoretical.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1. Bland-Altman plot for the training dataset (A) and the jackknife-based validation dataset (B) in a population of subjects with different clinical characteristics (nondiabetic [ND] and type 2 diabetes mellitus [T2DM] groups). The continuous line represents the mean of the difference between minimal model glucose effectiveness (SG) and calculated SG (CSG); the dash-dotted lines represent the limits of agreement (mean±1.96×standard deviation).
Fig. 2
Fig. 2. Bland-Altman plot for the previous gestational diabetes mellitus group (women) at baseline (A) and follow-up (B). The continuous line represents the mean of the difference between minimal model glucose effectiveness (SG) and calculated SG (CSG); the dash-dotted lines represent the limits of agreement (mean±1.96×standard deviation).
Fig. 3
Fig. 3. Bland-Altman plot for the (A) women not progressing to type 2 diabetes mellitus (NONPROG) and (B) women progressing to type 2 diabetes mellitus (PROG) subgroups at baseline and follow-up. The continuous line represents the mean of the difference between minimal model glucose effectiveness (SG) and calculated SG (CSG); the dash-dotted lines represent the limits of agreement (mean±1.96×standard deviation).
Fig. 4
Fig. 4. Glucose effectiveness assessed by (A) minimal model glucose effectiveness (SG) and (B) calculated SG (CSG) at baseline and follow-up in the women not progressing to type 2 diabetes mellitus at follow-up (NONPROG) and women progressing to type 2 diabetes mellitus (PROG) subgroups. Data are expressed as mean±standard error of the mean. aStatistically significant difference (P<0.05).

References

    1. Pacini G, Thomaseth K, Ahren B. Contribution to glucose tolerance of insulin-independent vs. insulin-dependent mechanisms in mice. Am J Physiol Endocrinol Metab. 2001;281:E693–E703. - PubMed
    1. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP. The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes. 1994;43:587–592. - PubMed
    1. Ader M, Ni TC, Bergman RN. Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components. J Clin Invest. 1997;99:1187–1199. - PMC - PubMed
    1. Alford FP, Henriksen JE, Rantzau C, Beck-Nielsen H. Glucose effectiveness is a critical pathogenic factor leading to glucose intolerance and type 2 diabetes: an ignored hypothesis. Diabetes Metab Res Rev. 2018;34:e2989. - PubMed
    1. Morettini M, Di Nardo F, Ingrillini L, Fioretti S, Gobl C, Kautzky-Willer A, Tura A, Pacini G, Burattini L. Glucose effectiveness and its components in relation to body mass index. Eur J Clin Invest. 2019:e13099. - PubMed

MeSH terms