Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 5;11(3):418-426.
doi: 10.1021/acschemneuro.9b00621. Epub 2020 Jan 17.

Veratridine: A Janus-Faced Modulator of Voltage-Gated Sodium Ion Channels

Affiliations

Veratridine: A Janus-Faced Modulator of Voltage-Gated Sodium Ion Channels

Robert A Craig 2nd et al. ACS Chem Neurosci. .

Abstract

Voltage-gated sodium ion channels (NaVs) are integral to both neuronal and muscular signaling and are a primary target for a number of proteinaceous and small molecule toxins. Included among these neurotoxins is veratridine (VTD), a C-nor-D homosteroidal alkaloid from the seeds of members of the Veratrum genus. VTD binds to NaV within the pore region, causing a hyperpolarizing shift in the activation threshold in addition to reducing peak current. We have characterized the activity of VTD against heterologously expressed rat NaV1.4 and have demonstrated that VTD acts on the channel as either an agonist or antagonist depending on the nature of the electrophysiological stimulation protocol. Structure-activity studies with VTD and VTD derivatives against NaV mutants show that the functional duality of VTD can be decoupled. These findings suggest that the dichotomous activity of VTD may derive from two distinct, use-dependent binding orientations of the toxin.

Keywords: Site II; Sodium channel; electrophysiology; veratridine.

PubMed Disclaimer

Publication types

LinkOut - more resources