Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb:139:164-175.
doi: 10.1016/j.yjmcc.2020.01.001. Epub 2020 Jan 18.

MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway

Affiliations

MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway

Zhuowang Ge et al. J Mol Cell Cardiol. 2020 Feb.

Abstract

Atrial fibrillation (AF) is characterized by potentiated growth of atrial fibroblasts and excessive deposition of the extracellular matrix. Atrial fibrosis has emerged as a hallmark of atrial structural remodeling linked to AF. Nonetheless, the specific mechanism underlying the progression of atrial fibrosis to AF is still largely unknown. MFGE8 (milk fat globule-EGF factor 8) is a soluble glycoprotein associated with many human diseases. Recently, a number of studies revealed that MFGE8 plays a crucial role in heart disease. Yet, MFGE8 regulation and function in the process of atrial fibrosis and vulnerability to AF remain unexplored. In this study, we found that the expression of MFGE8 was downregulated in the atriums of patients with AF compared with individuals without AF. In addition, the expression of MFGE8 was lower in atriums of angiotensin II (Ang-II)-stimulated rats as compared with the sham group. In vitro, silencing of MFGE8 by small interfering RNA significantly increased Ang-II-induced atrial fibrosis, whereas administration of recombinant human MFGE8 (rhMFGE8) attenuated the atrial fibrosis. Moreover, we found that the activated TGF-β1/Smad2/3 pathway after Ang-II treatment was significantly potentiated by the MFGE8 knockdown but inhibited by rhMFGE8 in vitro. Inhibition of integrin β3 which is the receptor for MFGE8, suppressed the TGF-β1/Smad2/3 activating effects of the MFGE8 knockdown in Ang-II-treated rat atrial fibroblasts. Finally, we administered rhMFGE8 to rats; it attenuated atrial fibrosis and remodeling and further reduced AF vulnerability induced by Ang-II, indicating that MFGE8 might have the potential both as a novel biomarker and as a therapeutic target in atrial fibrosis and AF.

Keywords: Angiotensin II; Atrial fibrillation; Atrial fibrosis; MFGE8.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no conflict of interest.

Publication types

MeSH terms

LinkOut - more resources