Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;5(4):630-641.
doi: 10.1038/s41564-019-0658-4. Epub 2020 Jan 20.

Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition

Affiliations

Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition

Rita A Oliveira et al. Nat Microbiol. 2020 Apr.

Abstract

Intestinal microbiotas contain beneficial microorganisms that protect against pathogen colonization; treatment with antibiotics disrupts the microbiota and compromises colonization resistance. Here, we determine the impact of exchanging microorganisms between hosts on resilience to the colonization of invaders after antibiotic-induced dysbiosis. We assess the functional consequences of dysbiosis using a mouse model of colonization resistance against Escherichia coli. Antibiotics caused stochastic loss of members of the microbiota, but the microbiotas of co-housed mice remained more similar to each other compared with the microbiotas among singly housed animals. Strikingly, co-housed mice maintained colonization resistance after treatment with antibiotics, whereas most singly housed mice were susceptible to E. coli. The ability to retain or share the commensal Klebsiella michiganensis, a member of the Enterobacteriaceae family, was sufficient for colonization resistance after treatment with antibiotics. K. michiganensis generally outcompeted E. coli in vitro, but in vivo administration of galactitol-a nutrient that supports the growth of only E. coli-to bi-colonized gnotobiotic mice abolished the colonization-resistance capacity of K. michiganensis against E. coli, supporting the idea that nutrient competition is the primary interaction mechanism. K. michiganensis also hampered colonization of the pathogen Salmonella, prolonging host survival. Our results address functional consequences of the stochastic effects of microbiota perturbations, whereby microbial transmission through host interactions can facilitate reacquisition of beneficial commensals, minimizing the negative impact of antibiotics.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012). - DOI
    1. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012). - DOI - PubMed - PMC
    1. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). - DOI
    1. Ubeda, C., Djukovic, A. & Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol. 6, e128 (2017). - DOI
    1. Baumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016). - DOI - PubMed - PMC

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources