Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 12;12(6):7477-7485.
doi: 10.1021/acsami.9b21698. Epub 2020 Jan 29.

Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding

Affiliations

Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding

Chuntao Lan et al. ACS Appl Mater Interfaces. .

Abstract

Conductive coatings show great promise for next-generation electromagnetic interference (EMI) shielding challenges on textile; however, their stringent requirements for electrical conductivity are difficult to meet by conventional approaches of increasing the loading and homogeneity of conductive nanofillers. Here, the axial alignment of carbon nanotubes (CNTs) on fibers that were obtained by spontaneous capillary-driven self-assembly is shown on commercial cotton fabrics, and its great potential for EMI shielding is demonstrated. The aligned CNTs structurally optimize the conductive network on fabrics and yield an 81-fold increase in electrical conductivity per unit of CNT, compared with the disordered CNT microstructure. The high-efficiency electrical conductivity allows a several-micron-thick coating on insulating fabrics to endow an EMI shielding effectiveness of 21.5 dB in the X band and 20.8 dB in the Ku band, which meets the standard shielding requirement in commercial applications. It is among the minimum reported thicknesses for conductive nanocomposite coatings to date. Moreover, the coated fabrics with aligned CNTs possess a desirable stability upon bending, scratching, stripping, and even washing, which is attributed to the dense CNT packing in the aligned microarchitecture. This work presents the anisotropic structure on large areas by self-assembly, offering new opportunities for next-generation portable and wearable electronic devices.

Keywords: alignment; capillary effect; carbon nanotubes; electromagnetic interference shielding; self-assembly.

PubMed Disclaimer

LinkOut - more resources