Maximum likelihood identification of neural point process systems
- PMID: 3196770
- DOI: 10.1007/BF00332915
Maximum likelihood identification of neural point process systems
Abstract
Using the theory of random point processes, a method is presented whereby functional relationships between neurons can be detected and modeled. The method is based on a point process characterization involving stochastic intensities and an additive rate function model. Estimates are based on the maximum likelihood (ML) principle and asymptotic properties are examined in the absence of a stationarity assumption. An iterative algorithm that computes the ML estimates is presented. It is based on the expectation/maximization (EM) procedure of Dempster et al. (1977) and makes ML identification accessible to models requiring many parameters. Examples illustrating the use of the method are also presented. These examples are derived from simulations of simple neural systems that cannot be identified using correlation techniques. It is shown that the ML method correctly identifies each of these systems.
Similar articles
-
Identification and estimation algorithm for stochastic neural system. II.Biol Cybern. 1985;52(2):71-8. doi: 10.1007/BF00363997. Biol Cybern. 1985. PMID: 4016161
-
Activity analysis of neural networks.Biol Cybern. 1979 Oct;34(3):159-69. doi: 10.1007/BF00336967. Biol Cybern. 1979. PMID: 486594
-
Fractal and chaotic dynamics in nervous systems.Prog Neurobiol. 1991;36(4):279-308. doi: 10.1016/0301-0082(91)90003-j. Prog Neurobiol. 1991. PMID: 1871317 Review.
-
Methods of analysis of neural nets.Biol Cybern. 1976 Feb 27;22(1):1-6. doi: 10.1007/BF00340227. Biol Cybern. 1976. PMID: 1252551 No abstract available.
-
Dual coding hypotheses for neural information representation.Math Biosci. 2007 Jun;207(2):312-21. doi: 10.1016/j.mbs.2006.09.009. Epub 2006 Sep 23. Math Biosci. 2007. PMID: 17161438 Review.
Cited by
-
Assessing neuronal interactions of cell assemblies during general anesthesia.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4175-8. doi: 10.1109/IEMBS.2011.6091036. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255259 Free PMC article.
-
Fitting of dynamic recurrent neural network models to sensory stimulus-response data.J Biol Phys. 2018 Sep;44(3):449-469. doi: 10.1007/s10867-018-9501-z. Epub 2018 Jun 2. J Biol Phys. 2018. PMID: 29860641 Free PMC article.
-
Functional identification of biological neural networks using reservoir adaptation for point processes.J Comput Neurosci. 2010 Aug;29(1-2):279-299. doi: 10.1007/s10827-009-0176-0. Epub 2009 Jul 29. J Comput Neurosci. 2010. PMID: 19639401 Free PMC article.
-
Superlinear population encoding of dynamic hand trajectory in primary motor cortex.J Neurosci. 2004 Sep 29;24(39):8551-61. doi: 10.1523/JNEUROSCI.0919-04.2004. J Neurosci. 2004. PMID: 15456829 Free PMC article.
-
A new look at state-space models for neural data.J Comput Neurosci. 2010 Aug;29(1-2):107-126. doi: 10.1007/s10827-009-0179-x. Epub 2009 Aug 1. J Comput Neurosci. 2010. PMID: 19649698 Free PMC article. Review.