Genome-scale transcriptional dynamics and environmental biosensing
- PMID: 31974311
- PMCID: PMC7022183
- DOI: 10.1073/pnas.1913003117
Genome-scale transcriptional dynamics and environmental biosensing
Abstract
Genome-scale technologies have enabled mapping of the complex molecular networks that govern cellular behavior. An emerging theme in the analyses of these networks is that cells use many layers of regulatory feedback to constantly assess and precisely react to their environment. The importance of complex feedback in controlling the real-time response to external stimuli has led to a need for the next generation of cell-based technologies that enable both the collection and analysis of high-throughput temporal data. Toward this end, we have developed a microfluidic platform capable of monitoring temporal gene expression from over 2,000 promoters. By coupling the "Dynomics" platform with deep neural network (DNN) and associated explainable artificial intelligence (XAI) algorithms, we show how machine learning can be harnessed to assess patterns in transcriptional data on a genome scale and identify which genes contribute to these patterns. Furthermore, we demonstrate the utility of the Dynomics platform as a field-deployable real-time biosensor through prediction of the presence of heavy metals in urban water and mine spill samples, based on the the dynamic transcription profiles of 1,807 unique Escherichia coli promoters.
Keywords: E. coli transcriptomics; biosensor; dynamics; explainable AI; high-throughput microfluidics.
Conflict of interest statement
Competing interest statement: W.H.M., M.F., S.C., and J.H. have a financial interest in Quantitative BioSciences. Quantitative BioSciences has an exclusive license to IP stemming from this work, which is owned by the University of California San Diego.
Figures





Similar articles
-
Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors.Biosens Bioelectron. 2015 Mar 15;65:257-64. doi: 10.1016/j.bios.2014.10.028. Epub 2014 Oct 18. Biosens Bioelectron. 2015. PMID: 25461167
-
High-resolution temporal profiling of E. coli transcriptional response.Nat Commun. 2023 Nov 22;14(1):7606. doi: 10.1038/s41467-023-43173-7. Nat Commun. 2023. PMID: 37993418 Free PMC article.
-
A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time.Biosens Bioelectron. 2025 Jun 1;277:117264. doi: 10.1016/j.bios.2025.117264. Epub 2025 Feb 17. Biosens Bioelectron. 2025. PMID: 39987654
-
On-line and in situ biosensors for monitoring environmental pollution.Biotechnol Adv. 2003 Dec;22(1-2):27-33. doi: 10.1016/j.biotechadv.2003.08.014. Biotechnol Adv. 2003. PMID: 14623041 Review.
-
Detection of heavy metal by paper-based microfluidics.Biosens Bioelectron. 2016 Sep 15;83:256-66. doi: 10.1016/j.bios.2016.04.061. Epub 2016 Apr 21. Biosens Bioelectron. 2016. PMID: 27131999 Review.
Cited by
-
A Microfluidic Platform for Screening Gene Expression Dynamics across Yeast Strain Libraries.Bio Protoc. 2023 Nov 20;13(22):e4883. doi: 10.21769/BioProtoc.4883. eCollection 2023 Nov 20. Bio Protoc. 2023. PMID: 38023791 Free PMC article.
-
Sensory Systems and Transcriptional Regulation in Escherichia coli.Front Bioeng Biotechnol. 2022 Feb 14;10:823240. doi: 10.3389/fbioe.2022.823240. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35237580 Free PMC article. Review.
-
Genes selection using deep learning and explainable artificial intelligence for chronic lymphocytic leukemia predicting the need and time to therapy.Front Oncol. 2023 Aug 31;13:1198992. doi: 10.3389/fonc.2023.1198992. eCollection 2023. Front Oncol. 2023. PMID: 37719021 Free PMC article.
-
Environmental monitoring from the air with hyperspectral reporters.Nat Biotechnol. 2025 Apr 29. doi: 10.1038/s41587-025-02668-y. Online ahead of print. Nat Biotechnol. 2025. PMID: 40301658 No abstract available.
-
Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology.Biodes Res. 2024 Jun 25;6:0037. doi: 10.34133/bdr.0037. eCollection 2024. Biodes Res. 2024. PMID: 38919711 Free PMC article.
References
-
- Kholodenko B., Yaffe M. B., Kolch W., Computational approaches for analyzing information flow in biological networks. Sci. Signal. 5, re1 (2012). - PubMed
-
- Milo R., et al. , Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002). - PubMed
-
- Jacob F., Monod J., Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961). - PubMed
-
- Gardner T. S., Cantor C. R., Collins J. J., Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000). - PubMed
-
- Krupp M., et al. , RNA-Seq Atlas-a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics 28, 1184–1185 (2012). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases