Three-site and five-site fixed-charge water models compatible with AMOEBA force field
- PMID: 31976572
- DOI: 10.1002/jcc.26151
Three-site and five-site fixed-charge water models compatible with AMOEBA force field
Abstract
In a typical biomolecular simulation using Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field, the vast majority molecules in the simulation box consist of water, and these water molecules consume the most CPU power due to the explicit mutual induction effect. To improve the computational efficiency, we here develop two new nonpolarizable water models (with flexible bonds and fixed charges) that are compatible with AMOEBA solute: the 3-site AW3C and 5-site AW5C. To derive the force-field parameters for AW3C and AW5C, we fit to six experimental liquid thermodynamic properties: liquid density, enthalpy of vaporization, dielectric constant, isobaric heat capacity, isothermal compressibility and thermal expansion coefficient, at a broad range of temperatures from 261.15 to 353.15 K under 1.0 atm pressure. We further validate our AW3C and AW5C water models by showing that they can well reproduce the radial distribution function g(r), self-diffusion constant D, and hydration free energy from the AMOEBA03 water model and the experimental observations. Furthermore, we show that our AW3C and AW5C water models can greatly accelerate (>5 times) the bulk water as well as biomolecular simulations when compared to AMOEBA water. Specifically, we demonstrate that the applications of AW3C and AW5C water models to simulate a DNA duplex lead to a threefold acceleration, and in the meanwhile well maintain the structural properties as the fully polarizable AMOEBA water. We expect that our AW3C and AW5C water models hold great promise to be widely applied to simulate complex bio-molecules using the AMOEBA force field.
Keywords: AMOEBA force field; fixed-charge water model; molecular simulations.
© 2020 Wiley Periodicals, Inc.
Similar articles
-
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19. J Chem Inf Model. 2023. PMID: 37075788 Free PMC article.
-
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.J Phys Chem B. 2015 Jul 23;119(29):9423-9437. doi: 10.1021/jp510896n. Epub 2015 Feb 26. J Phys Chem B. 2015. PMID: 25683601 Free PMC article.
-
A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.Molecules. 2017 Dec 31;23(1):77. doi: 10.3390/molecules23010077. Molecules. 2017. PMID: 29301229 Free PMC article.
-
Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.J Comput Aided Mol Des. 2019 Feb;33(2):205-264. doi: 10.1007/s10822-018-0134-x. Epub 2018 Nov 30. J Comput Aided Mol Des. 2019. PMID: 30506159 Review.
-
Current Status of AMOEBA-IL: A Multipolar/Polarizable Force Field for Ionic Liquids.Int J Mol Sci. 2020 Jan 21;21(3):697. doi: 10.3390/ijms21030697. Int J Mol Sci. 2020. PMID: 31973103 Free PMC article. Review.
Cited by
-
Insights from the Absorption Coefficient for the Development of Polarizable (Multipole) Force Fields.Molecules. 2025 Jul 11;30(14):2941. doi: 10.3390/molecules30142941. Molecules. 2025. PMID: 40733210 Free PMC article.
-
Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution.J Chem Phys. 2021 Feb 14;154(6):064104. doi: 10.1063/5.0038342. J Chem Phys. 2021. PMID: 33588532 Free PMC article.
-
Accurate description of molecular dipole surface with charge flux implemented for molecular mechanics.J Chem Phys. 2020 Aug 14;153(6):064103. doi: 10.1063/5.0016376. J Chem Phys. 2020. PMID: 35287459 Free PMC article.
References
REFERENCES
-
- E. Brini, C. J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič, K. A. Dill, Chem. Rev. 2017, 117, 12385.
-
- O. Demerdash, L.-P. Wang, T. Head-Gordon, Comput. Mol. Sci. 2018, 8, e1355.
-
- Z. Jing, C. Liu, S. Y. Cheng, R. Qi, B. D. Walker, J.-P. Piquemal, P. Ren, Ann. Rev. Biophys. 2019, 48, 371.
-
- W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926.
-
- M. W. Mahoney, W. L. Jorgensen, J. Chem. Phys. 2000, 112, 8910.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous