Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr:149:192-217.
doi: 10.1016/j.ejpb.2020.01.005. Epub 2020 Jan 23.

Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases

Affiliations
Review

Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases

M I Teixeira et al. Eur J Pharm Biopharm. 2020 Apr.

Abstract

The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.

Keywords: Blood-brain barrier (BBB); Brain drug delivery; Lipid nanocarriers; Nanoparticles; Neurodegeneration; Neurodegenerative diseases.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.