Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar;32(9):e1905502.
doi: 10.1002/adma.201905502. Epub 2020 Jan 27.

Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells

Affiliations

Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells

Xiao-Xin Gao et al. Adv Mater. 2020 Mar.

Abstract

Organic-inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long-term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase-stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br- ), the amount of Br- is regulated, leading to high power conversion efficiency. As a result, MA-free perovskite solar cells achieve remarkable long-term stability and a PCE of 20.50%, which is one of the best results for MA-free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs.

Keywords: cesium chloride; lead bromide; methylammonium free; perovskite solar cells; thermal stability.

PubMed Disclaimer

References

    1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    1. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
    1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
    1. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    1. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.