Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Apr;27(2):106-121.
doi: 10.1097/LBR.0000000000000645.

The Diagnostic Accuracy and Sensitivity for Malignancy of Radial-Endobronchial Ultrasound and Electromagnetic Navigation Bronchoscopy for Sampling of Peripheral Pulmonary Lesions: Systematic Review and Meta-analysis

Affiliations
Meta-Analysis

The Diagnostic Accuracy and Sensitivity for Malignancy of Radial-Endobronchial Ultrasound and Electromagnetic Navigation Bronchoscopy for Sampling of Peripheral Pulmonary Lesions: Systematic Review and Meta-analysis

Anna L McGuire et al. J Bronchology Interv Pulmonol. 2020 Apr.

Abstract

Background: Lung cancer screening with computed tomography chest is identifying peripheral pulmonary lesions (PPLs) suspicious for early-stage lung cancer at increasing rates. Radial-endobronchial ultrasound (R-EBUS) and electromagnetic navigation bronchoscopy (ENB) are 2 methods to sample PPLs to diagnose and treat early lung cancer. ENB has a higher operating financial cost, however, the rationale for its use is possible higher diagnostic accuracy versus R-EBUS.

Objective: The objective of this study was to determine the comparative diagnostic accuracy, sensitivity, and negative predictive value for R-EBUS and ENB in sampling PPLs.

Methods: A systematic review and meta-analysis were conducted. The Ovid Medline database was queried for original research reporting a diagnostic yield of R-EBUS or ENB for PPLs identified on computed tomography chest suspicious for malignancy. The I statistic assessed study heterogeneity. Random effects models produced pooled estimates of diagnostic accuracy and sensitivity for malignancy. Reasons for heterogeneity were explored with meta-regression. Publication bias and small study effects were assessed.

Results: A total of 41 studies involved 2988 lung nodules (R-EBUS 2102, ENB 886) in 3204 patients (R-EBUS 2097, ENB 1107). Overall sensitivity to detect cancer was 70.7% [95% confidence interval (CI): 67.2-74.0]; R-EBUS 70.5% (95% CI: 66.1-74.8), ENB 70.7% (95% CI: 64.7-76.8). Pooled overall diagnostic accuracy was 74.2% (95% CI: 71.0-77.3); R-EBUS 72.4% (95% CI: 68.7-76.1), ENB 76.4% (95% CI: 70.8-82.0). The localization modalities had comparative safety profiles of <2% complications.

Conclusion: Both technologies have a high proportion of successful PPL localization with similar sensitivity for malignancy and accuracy. As such, both reasonable options for health care authorities to employ diagnostic algorithms.

PubMed Disclaimer

References

    1. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369:910–919.
    1. Pedersen JH, Rzyman W, Veronesi G, et al. Recommendations from the European Society of Thoracic Surgeons (ESTS) regarding computed tomography screening for lung cancer in Europe. Eur J Cardiothorac Surg. 2017;51:411–420.
    1. Church TR, Black WC, Aberle DR, et al. Results of initial low-dose computed tomographic screening for lung cancer: National Lung Screening Trial. N Engl J Med. 2013;368:1980–1991.
    1. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284:228–243.
    1. Swensen SJ, Jett JR, Hartman TE, et al. CT screening for lung cancer: five-year prospective experience. Radiology. 2005;235:259–265.