Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 Jan 27;15(1):e0227793.
doi: 10.1371/journal.pone.0227793. eCollection 2020.

Factors associated with hemolysis during extracorporeal membrane oxygenation (ECMO)-Comparison of VA- versus VV ECMO

Affiliations
Comparative Study

Factors associated with hemolysis during extracorporeal membrane oxygenation (ECMO)-Comparison of VA- versus VV ECMO

Hannah Appelt et al. PLoS One. .

Abstract

Venovenous (VV) and venoarterial (VA) extracorporeal membrane oxygenation (ECMO) are effective support modalities to treat critically ill patients. ECMO-associated hemolysis remains a serious complication. The aim was to disclose similarities and differences in VA- and VV ECMO-associated hemolysis. This is a retrospective single-center analysis (January 2012 to September 2018) including 1,063 adult consecutive patients (VA, n = 606; VV, n = 457). Severe hemolysis (free plasma hemoglobin, fHb > 500 mg/l) during therapy occurred in 4% (VA) and 2% (VV) (p≤0.001). VV ECMO showed significantly more hemolysis by pump head thrombosis (PHT) compared to VA ECMO (9% vs. 2%; p≤0.001). Pretreatments (ECPR, cardiac surgery) of patients who required VA ECMO caused high fHb pre levels which aggravates the proof of ECMO-induced hemolysis (median (interquartile range), VA: fHb pre: 225.0 (89.3-458.0); VV: fHb pre: 72.0 (42.0-138.0); p≤0.001). The survival rate to discharge from hospital differed depending on ECMO type (40% (VA) vs. 63% (VV); p≤0.001). Hemolysis was dominant in VA ECMO patients, mainly caused by different indications and not by the ECMO support itself. PHT was the most severe form of ECMO-induced hemolysis that occurs in both therapies with low frequency, but more commonly in VV ECMO due to prolonged support time.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Effect of cannula size and blood flow on hemolysis induction regarding VA ECMO patients with fHb pre ≤ 100 mg/l (without pump head thrombosis).
15 Fr n = 86, 17 Fr n = 36. (A) Cannula size (Fr, French) had no effect on fHb levels on 1st and 2nd day on ECMO. (B) 17 Fr cannulas required a significantly higher blood flow compared to 15 Fr cannulas. (C) High blood flow (≥ 3 l/min) within 15 Fr cannulas induced significantly higher fHb levels compared to low blood flow (≤ 2.5 l/min). The median is shown as a black line in the box. The 25% or 75% quantile represents the lower or upper limit of the box. The smallest and largest observation is shown as whiskers, extreme values as circles.
Fig 2
Fig 2. All fHb measurements from 1st day till end of VA- or VV ECMO support (A: VA n = 606, B: VV n = 457).
The lines divide the graph into values ≤ 100 mg/l (102), 101–500 mg/l, 501–1000 mg/l and > 1,000 mg/l (103) which indicates a rising degree of hemolysis. The arrow shows all fHb above 100 mg/l that are suspected of hemolysis: 26% (VA) vs. 15% (VV). Of particular importance were fHb values above 500 mg/l as critical hemolysis markers [2,9]: 1% (VA) vs. 0.4% (VV).

Similar articles

Cited by

References

    1. Lubnow M, Philipp A, Foltan M, Bull Enger T, Lunz D, Bein T, et al. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange—retrospective analysis of 265 cases. PloS one 2014; 9 (12): 4112316. - PMC - PubMed
    1. Murphy DA, Hockings LE, Andrews RK, Aubron C, Gardiner EE, Pellegrino VA, et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfusion medicine reviews 2015; 29 (2): 90–101. 10.1016/j.tmrv.2014.12.001 - DOI - PubMed
    1. Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, et al. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Critical Care and Resuscitation 2013; 15 (3): 172–178. - PubMed
    1. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. A novel mechanism of human disease. JAMA 2005; 293 (13): 1653–1662. 10.1001/jama.293.13.1653 - DOI - PubMed
    1. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited. Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 2013; 121 (8): 1276–1284. 10.1182/blood-2012-11-451229 - DOI - PMC - PubMed

Publication types