Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr:124:117-129.
doi: 10.1016/j.neunet.2019.12.024. Epub 2020 Jan 7.

Attention-guided CNN for image denoising

Affiliations

Attention-guided CNN for image denoising

Chunwei Tian et al. Neural Netw. 2020 Apr.

Abstract

Deep convolutional neural networks (CNNs) have attracted considerable interest in low-level computer vision. Researches are usually devoted to improving the performance via very deep CNNs. However, as the depth increases, influences of the shallow layers on deep layers are weakened. Inspired by the fact, we propose an attention-guided denoising convolutional neural network (ADNet), mainly including a sparse block (SB), a feature enhancement block (FEB), an attention block (AB) and a reconstruction block (RB) for image denoising. Specifically, the SB makes a tradeoff between performance and efficiency by using dilated and common convolutions to remove the noise. The FEB integrates global and local features information via a long path to enhance the expressive ability of the denoising model. The AB is used to finely extract the noise information hidden in the complex background, which is very effective for complex noisy images, especially real noisy images and bind denoising. Also, the FEB is integrated with the AB to improve the efficiency and reduce the complexity for training a denoising model. Finally, a RB aims to construct the clean image through the obtained noise mapping and the given noisy image. Additionally, comprehensive experiments show that the proposed ADNet performs very well in three tasks (i.e. synthetic and real noisy images, and blind denoising) in terms of both quantitative and qualitative evaluations. The code of ADNet is accessible at https://github.com/hellloxiaotian/ADNet.

Keywords: Attention block; CNN; Feature enhancement block; Image denoising; Sparse block.

PubMed Disclaimer

MeSH terms

LinkOut - more resources