Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator
- PMID: 31995483
- DOI: 10.1109/TUFFC.2020.2969530
Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator
Abstract
A 61-MHz Pierce oscillator constructed in 0.35- [Formula: see text] CMOS technology and referenced to a polysilicon surface-micromachined capacitive-gap-transduced wine-glass disk resonator has achieved phase noise marks of -119 dBc/Hz at 1-kHz offset and -139 dBc/Hz at far-from-carrier offsets. When divided down to 13 MHz, this corresponds to -132 dBc/Hz at 1-kHz offset from the carrier and -152 dBc/Hz far-from-carrier, sufficient for mobile phone reference oscillator applications, using a single MEMS resonator, i.e., without the need to array multiple resonators. Key to achieving these marks is a Pierce-based circuit design that harnesses a MEMS-enabled input-to-output shunt capacitance more than 100× smaller than exhibited by macroscopic quartz crystals to enable enough negative resistance to instigate and sustain oscillation while consuming only [Formula: see text] of power-a reduction of ∼ 4.5× over previous work. Increasing the bias voltage of the resonator by 1.25 V further reduces power consumption to [Formula: see text] at the cost of only a few decibels in far-from-carrier phase noise. This oscillator achieves a 1-kHz-offset figure of merit (FOM) of -231 dB, which is now the best among published chip-scale oscillators to date. A complete linear circuit analysis quantifies the influence of resonator input-to-output shunt capacitance on power consumption and predicts further reductions in power consumption via reduction of electrode-to-resonator transducer gaps and bond pad sizes. The demonstrated phase noise and power consumption posted by this tiny MEMS-based oscillator are attractive as potential enablers for low-power "set-and-forget" autonomous sensor networks and embedded radios.
Similar articles
-
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits.Micromachines (Basel). 2025 Jun 26;16(7):755. doi: 10.3390/mi16070755. Micromachines (Basel). 2025. PMID: 40731663 Free PMC article.
-
A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Sep;67(9):1854-1866. doi: 10.1109/TUFFC.2020.2989623. Epub 2020 Apr 22. IEEE Trans Ultrason Ferroelectr Freq Control. 2020. PMID: 32324549
-
A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dBΩ Adjustable Bandwidth Transimpedance Amplifier and a Lamé-Mode Resonator.Sensors (Basel). 2019 Jun 13;19(12):2680. doi: 10.3390/s19122680. Sensors (Basel). 2019. PMID: 31200575 Free PMC article.
-
Readout Circuits for Capacitive Sensors.Micromachines (Basel). 2021 Aug 13;12(8):960. doi: 10.3390/mi12080960. Micromachines (Basel). 2021. PMID: 34442582 Free PMC article. Review.
-
Concepts and Key Technologies of Microelectromechanical Systems Resonators.Micromachines (Basel). 2022 Dec 11;13(12):2195. doi: 10.3390/mi13122195. Micromachines (Basel). 2022. PMID: 36557494 Free PMC article. Review.
Cited by
-
A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization.Micromachines (Basel). 2021 Jan 15;12(1):82. doi: 10.3390/mi12010082. Micromachines (Basel). 2021. PMID: 33467477 Free PMC article.
-
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits.Micromachines (Basel). 2025 Jun 26;16(7):755. doi: 10.3390/mi16070755. Micromachines (Basel). 2025. PMID: 40731663 Free PMC article.
-
Lateral Extensional Mode Piezoelectric ZnO-on-Nickel RF MEMS Resonators for Back-End-of-Line Integration.Micromachines (Basel). 2023 May 22;14(5):1089. doi: 10.3390/mi14051089. Micromachines (Basel). 2023. PMID: 37241712 Free PMC article.
-
A 6.7 μW Low-Noise, Compact PLL with an Input MEMS-Based Reference Oscillator Featuring a High-Resolution Dead/Blind Zone-Free PFD.Sensors (Basel). 2024 Dec 13;24(24):7963. doi: 10.3390/s24247963. Sensors (Basel). 2024. PMID: 39771701 Free PMC article.
LinkOut - more resources
Full Text Sources
Miscellaneous