Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 Jan 29;20(1):9.
doi: 10.1186/s12880-020-0415-4.

Patient-adapted organ absorbed dose and effective dose estimates in pediatric 18F-FDG positron emission tomography/computed tomography studies

Affiliations
Comparative Study

Patient-adapted organ absorbed dose and effective dose estimates in pediatric 18F-FDG positron emission tomography/computed tomography studies

Brian M Quinn et al. BMC Med Imaging. .

Abstract

Background: Organ absorbed doses and effective doses can be used to compare radiation exposure among medical imaging procedures, compare alternative imaging options, and guide dose optimization efforts. Individual dose estimates are important for relatively radiosensitive patient populations such as children and for radiosensitive organs such as the eye lens. Software-based dose calculation methods conveniently calculate organ dose using patient-adjusted and examination-specific inputs.

Methods: Organ absorbed doses and effective doses were calculated for 429 pediatric 18F-FDG PET-CT patients. Patient-adjusted and scan-specific information was extracted from the electronic medical record and scanner dose-monitoring software. The VirtualDose and OLINDA/EXM (version 2.0) programs, respectively, were used to calculate the CT and the radiopharmaceutical organ absorbed doses and effective doses. Patients were grouped according to age at the time of the scan as follows: less than 1 year old, 1 to 5 years old, 6 to 10 years old, 11 to 15 years old, and 16 to 17 years old.

Results: The mean (+/- standard deviation, range) total PET plus CT effective dose was 14.5 (1.9, 11.2-22.3) mSv. The mean (+/- standard deviation, range) PET effective dose was 8.1 (1.2, 5.7-16.5) mSv. The mean (+/- standard deviation, range) CT effective dose was 6.4 (1.8, 2.9-14.7) mSv. The five organs with highest PET dose were: Urinary bladder, heart, liver, lungs, and brain. The five organs with highest CT dose were: Thymus, thyroid, kidneys, eye lens, and gonads.

Conclusions: Organ and effective dose for both the CT and PET components can be estimated with actual patient and scan data using commercial software. Doses calculated using software generally agree with those calculated using dose conversion factors, although some organ doses were found to be appreciably different. Software-based dose calculation methods allow patient-adjusted dose factors. The effort to gather the needed patient data is justified by the resulting value of the characterization of patient-adjusted dosimetry.

Keywords: CT dosimetry; Effective dose; PET dosimetry; PET/CT dosimetry; Pediatric.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. NCRP . NCRP report 160: ionizing radiation exposure of the population of the United States. Bethesda: National Council on Radiation Protection and Measurements; 2006.
    1. Quinn B, Dauer Z, Pandit-Raskar N, Schoder H, Dauer LT. Radiation Dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging. 2016;16(1):41. doi: 10.1186/s12880-016-0143-y. - DOI - PMC - PubMed
    1. Chawla SC, Federman N, Zhang D, Nagata K, et al. Estimated cumulative Radiation dose from PET/CT in children with Malifnancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–686. doi: 10.1007/s00247-009-1434-z. - DOI - PMC - PubMed
    1. Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi M. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–1578. doi: 10.2967/jnumed.109.065912. - DOI - PubMed
    1. Kim YY, Shin HJ, Kim MJ, Lee MJ. Comparison of Effective Radiation Doses from X-ray, CT, and PET/CT in Pediatric Patients with Neuroblastoma Using a Dose Monitoring Program. Diagn Interv Radiol. 2009;22(4):390–394. doi: 10.5152/dir.2015.15221. - DOI - PMC - PubMed

Publication types

Substances