Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;107(8):1042-1052.
doi: 10.1002/bjs.11461. Epub 2020 Jan 30.

Machine learning to predict early recurrence after oesophageal cancer surgery

Collaborators, Affiliations

Machine learning to predict early recurrence after oesophageal cancer surgery

S A Rahman et al. Br J Surg. 2020 Jul.

Abstract

Background: Early cancer recurrence after oesophagectomy is a common problem, with an incidence of 20-30 per cent despite the widespread use of neoadjuvant treatment. Quantification of this risk is difficult and existing models perform poorly. This study aimed to develop a predictive model for early recurrence after surgery for oesophageal adenocarcinoma using a large multinational cohort and machine learning approaches.

Methods: Consecutive patients who underwent oesophagectomy for adenocarcinoma and had neoadjuvant treatment in one Dutch and six UK oesophagogastric units were analysed. Using clinical characteristics and postoperative histopathology, models were generated using elastic net regression (ELR) and the machine learning methods random forest (RF) and extreme gradient boosting (XGB). Finally, a combined (ensemble) model of these was generated. The relative importance of factors to outcome was calculated as a percentage contribution to the model.

Results: A total of 812 patients were included. The recurrence rate at less than 1 year was 29·1 per cent. All of the models demonstrated good discrimination. Internally validated areas under the receiver operating characteristic (ROC) curve (AUCs) were similar, with the ensemble model performing best (AUC 0·791 for ELR, 0·801 for RF, 0·804 for XGB, 0·805 for ensemble). Performance was similar when internal-external validation was used (validation across sites, AUC 0·804 for ensemble). In the final model, the most important variables were number of positive lymph nodes (25·7 per cent) and lymphovascular invasion (16·9 per cent).

Conclusion: The model derived using machine learning approaches and an international data set provided excellent performance in quantifying the risk of early recurrence after surgery, and will be useful in prognostication for clinicians and patients.

ANTECEDENTES: la recidiva precoz del cáncer tras esofaguectomía es un problema frecuente con una incidencia del 20-30% a pesar del uso generalizado del tratamiento neoadyuvante. La cuantificación de este riesgo es difícil y los modelos actuales funcionan mal. Este estudio se propuso desarrollar un modelo predictivo para la recidiva precoz después de la cirugía para el adenocarcinoma de esófago utilizando una gran cohorte multinacional y enfoques con aprendizaje automático. MÉTODOS: Se analizaron pacientes consecutivos sometidos a esofaguectomía por adenocarcinoma y que recibieron tratamiento neoadyuvante en 6 unidades de cirugía esofagogástrica del Reino Unido y 1 de los Países Bajos. Con la utilización de características clínicas y la histopatología postoperatoria se generaron modelos mediante regresión de red elástica (elastic net regression, ELR) y métodos de aprendizaje automático Random Forest (RF) y XG boost (XGB). Finalmente, se generó un modelo combinado (Ensemble) de dichos métodos. La importancia relativa de los factores respecto al resultado se calculó como porcentaje de contribución al modelo. RESULTADOS: En total se incluyeron 812 pacientes. La tasa de recidiva a menos de 1 año fue del 29,1%. Todos los modelos demostraron una buena discriminación. Las áreas bajo la curva ROC (AUC) validadas internamente fueron similares, con el modelo Ensemble funcionando mejor (ELR = 0,791, RF = 0,801, XGB = 0,804, Ensemble = 0,805). El rendimiento fue similar cuando se utilizaba validación interna-externa (validación entre centros, Ensemble AUC = 0,804). En el modelo final, las variables más importantes fueron el número de ganglios linfáticos positivos (25,7%) y la invasión linfovascular (16,9%). CONCLUSIÓN: El modelo derivado con la utilización de aproximaciones con aprendizaje automático y un conjunto de datos internacional proporcionó un rendimiento excelente para cuantificar el riesgo de recidiva precoz tras la cirugía y será útil para clínicos y pacientes a la hora de establecer un pronóstico.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study flow diagram
Figure 2
Figure 2
Model discrimination via 0·632 bootstrap Receiver operating characteristic (ROC) curves for a elastic net regression (area under the curve (AUC) 0·791, 95 per cent c.i. 0·757 to 0·826), b random forest (AUC 0·801, 0·769 to 0·834), c XG boost (AUC 0·804, 0·772 to 0·836) and d ensemble (AUC 0·805, 0·790 to 0·819). The shaded area represents the 95 per cent confidence interval.
Figure 3
Figure 3
Ensemble model calibration before and after adjustment a Unscaled calibration (intercept 0·395, slope 1·574) and b scaled calibration (intercept 0·143, slope 0·988). The shaded area represents two standard errors.

References

    1. Maynard N, Chadwick G, Varagunam M, Brand C, Cromwell D, Riley S et al National Oesophago‐Gastric Cancer Audit 2017. R Coll Surg Engl 2017: 103.
    1. Medical Research Council Oesophageal Cancer Working Group . Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002; 359: 1727–1733. - PubMed
    1. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M et al; MAGIC Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006; 355: 11–20. - PubMed
    1. Shapiro J, van Lanschot JJB, Hulshof MCCM, van Hagen P, van Berge Henegouwen MI et al; CROSS study group. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long‐term results of a randomised controlled trial. Lancet Oncol 2015; 16: 1090–1098. - PubMed
    1. Davies AR, Pillai A, Sinha P, Sandhu H, Adeniran A, Mattsson F et al Factors associated with early recurrence and death after esophagectomy for cancer. J Surg Oncol 2014; 109: 459–464. - PubMed

Publication types