Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 5:230:118084.
doi: 10.1016/j.saa.2020.118084. Epub 2020 Jan 21.

Selective sensing of Fe3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework

Affiliations

Selective sensing of Fe3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework

Peng Jia et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

As a significant metal ion in the environmental and biological systems, excess or shortage of Fe3+ from the organism can cause a host of diseases. So it is very urgent to explore an explicit, rapid and recoverable method for the detection of Fe3+ ions. Herein, a novel and flexible ligand containing 12 carboxyl groups (BHM-COOH) is used for the structure of a series of luminescent Eu3+/Tb3+-metal-organic frameworks (MOFs). A reliable and convenient luminescent detection platform is constructed by combining polylactic acid (PLA) film with Eu0.24Tb0.76-BHM-COOH. More importantly, the luminescent platform can highly sensitive to sense Fe3+ ions through fluorescence quenching (Stern-volmer constant Ksv = 1.27 × 104 M-1 for Fe(NO3)3), and detection limit can be as low as 4.47 μM. The sensing mechanism is ascribed to the fluorescence quenching caused by the competitive absorption between Eu0.24Tb0.76-BHM-COOH and Fe3+ ion. At the same time, the sensor can be reused many times. These exciting results indicate that Eu0.24Tb0.76-BHM-COOH film can serve as a promising multi-responsive luminescent sensor for environmental pollutant monitoring.

Keywords: Bimetallic Ln-MOFs; Fe(3+) ion detection; Fluorescent probe; Luminescent sensor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources