Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 4;35(12):2154-2160.
doi: 10.1093/ndt/gfz284.

Haemodialysis therapy and sustainable growth: a corporate experience in France

Affiliations

Haemodialysis therapy and sustainable growth: a corporate experience in France

Georges Bendine et al. Nephrol Dial Transplant. .

Abstract

Introduction: Sustainable growth and environmental issues are currently a topic for all human activities, and dialysis represents a real challenge in this field because of high water and power consumption and the production of large amounts of care-related waste. In this article we describe data collection implemented in the NephroCare centres in France and the changes observed during a 13-year period regarding environmental parameters.

Methods: Monthly data collection (eco-reporting) was implemented in NephroCare centres in France in 2005. It covers three topics designed as key performance indicators (KPIs): electricity and water consumption and care-related waste production expressed, respectively, as kilowatt-hour (kWh), litres (L) and kilograms per session. We report on the three action plans (2005-10, 2011-14 and 2015-18) and changes observed during this 13-year period.

Results: During the period, power and water consumption declined by 29.6% (from 23.1 to 16.26 kWh/session) and 52% (from 801 to 382 L/session), respectively. At the same time, the yearly number of dialysis sessions has increased from 169 335 to 399 336. The sources of savings came both from improvements in the dialysis technology (dialysis machines and water treatment systems) and from updating and remodelling of the dialysis unit equipment and buildings. The care-related waste decreased from 1.8 to 1.1 kg because of regular staff training and the retrofiltration system, allowing the voiding of the remaining saline solution after dialysis. These savings have been estimated as equivalent to 102 440 tons of carbon dioxide.

Discussion: Implementation of KPIs and their regular monitoring by trained staff to evaluate water and power consumption and the reduction of care-related water production are essential to implement actions to reduce the impact of dialysis on the environment. These data show the importance of water treatment and dialysis technology to decrease water and power consumption and the production of care-related waste as well as upgrading or remodelling of buildings housing dialysis units. Other measures are discussed, including the reuse of rejected water by reverse osmosis, as well as behavioural changes that are needed to reach sustainable development of dialysis.

Conclusion: The first step to reach 'green' dialysis is to collect precise information from defined KPIs. This is the only way to design action plans to reduce the impact of dialysis therapy on the environment. Beyond this, the nephrology community must be sensitized to this challenge to be proactive and to anticipate future regulations.

Keywords: carbon footprint; care-related waste; eco-reporting; haemodialysis; power and water consumptions.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
BSC displaying the December 2018 community section for NephroCare France. The score of 99% is the aggregate of the difference between the current result of each of the three KPIs and the target value for the three KPIs.
FIGURE 2
FIGURE 2
Electricity consumption in NephroCare B. The action plan consisted of changes in the reversible heat pump for air and water.
FIGURE 3
FIGURE 3
Water consumption in NephroCare P. The action plan consisted in changing the water treatment system (WTS) to a new updated one, producing a substantial decrease in water needs.
FIGURE 4
FIGURE 4
Sustainable development pyramid for dialysis activities. MOOC, massive open online courses.

Comment in

  • Nephrology: achieving sustainability.
    Blankestijn PJ, Bruchfeld A, Cozzolino M, Fliser D, Fouque D, Gansevoort R, Goumenos D, Massy ZA, Rychlık I, Soler MJ, Stevens K, Zoccali C. Blankestijn PJ, et al. Nephrol Dial Transplant. 2020 Dec 4;35(12):2030-2033. doi: 10.1093/ndt/gfaa193. Nephrol Dial Transplant. 2020. PMID: 32901289 No abstract available.

References

    1. Chung JW, Meltzer DO.. Estimate of the carbon footprint of the US health care sector. JAMA 2009; 302: 1970–1972 - PubMed
    1. Ponson L, Arkouche W, Laville M.. Toward green dialysis: focus on water savings. Hemodial Int 2014; 18: 7–14 - PubMed
    1. Agar JW. Personal viewpoint: hemodialysis–water, power, and waste disposal: rethinking our environmental responsibilities. Hemodial Int 2012; 16: 6–10 - PubMed
    1. Jonker E, Koopman C, van der Nagel N. et al. An integrated quality management system for healthcare. Open Med J 2017; 4(Suppl 1): 86–92
    1. Steil H, Amato C, Carioni C. et al. EuCliD—a medical registry. Methods Inf Med 2004; 43: 83–88 - PubMed