Targeting of the cGAS-STING system by DNA viruses
- PMID: 32004549
- DOI: 10.1016/j.bcp.2020.113831
Targeting of the cGAS-STING system by DNA viruses
Abstract
Innate sensing of viruses by cytosolic nucleic acid sensors is a key feature of anti-viral immunity against these pathogens. The DNA sensing pathway through the sensor cyclic GMP-AMP synthase (cGAS) and its downstream effector stimulator of interferon genes (STING) has emerged in recent years as a key, front-line means of driving interferons and pro-inflammatory cytokines in response to DNA virus infection in vertebrates. Unsurprisingly, many DNA viruses have evolved effective inhibitors of this signalling system which target at a wide variety of points from sensing all the way down to the activation of Interferon Regulatory Factor (IRF)-family and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-family transcription factors which drive a program of pro-inflammatory and anti-viral gene expression. Here we review DNA viruses that have been shown to inhibit this pathway and the inhibitors they have evolved to do it.
Keywords: DNA virus; IRF; NF-κB; STING; cGAS.
Copyright © 2020. Published by Elsevier Inc.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
