Spatiotemporal variability in case fatality ratios for the 2013-2016 Ebola epidemic in West Africa
- PMID: 32004692
- PMCID: PMC7191269
- DOI: 10.1016/j.ijid.2020.01.046
Spatiotemporal variability in case fatality ratios for the 2013-2016 Ebola epidemic in West Africa
Abstract
Background: For the 2013-2016 Ebola epidemic in West Africa, the largest Ebola virus disease (EVD) epidemic to date, we aim to analyse the patient mix in detail to characterise key sources of spatiotemporal heterogeneity in the case fatality ratios (CFR).
Methods: We applied a non-parametric Boosted Regression Trees (BRT) imputation approach for patients with missing survival outcomes and adjusted for model imperfection. Semivariogram analysis and kriging were used to investigate spatiotemporal heterogeneities.
Results: CFR estimates varied significantly between districts and over time over the course of the epidemic. BRT modelling accounted for most of the spatiotemporal variation and interactions in CFR, but moderate spatial autocorrelation remained for distances up to approximately 90 km. Combining district-level CFR estimates and kriged district-level residuals provided the best linear unbiased predicted map of CFR accounting for the both explained and unexplained spatial variation. Temporal autocorrelation was not observed in the district-level residuals from the BRT estimates.
Conclusions: This study provides new insight into the epidemiology of the 2013-2016 West African Ebola epidemic with a view of informing future public health contingency planning, resource allocation and impact assessment. The analytical framework developed in this analysis, coupled with key domain knowledge, could be deployed in real time to support the response to ongoing and future outbreaks.
Keywords: Case fatality ratio; Ebola; Spatiotemporal analysis; Variogram; West Africa.
Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Figures





Similar articles
-
Case Fatality Ratio Estimates for the 2013-2016 West African Ebola Epidemic: Application of Boosted Regression Trees for Imputation.Clin Infect Dis. 2020 Jun 10;70(12):2476-2483. doi: 10.1093/cid/ciz678. Clin Infect Dis. 2020. PMID: 31328221 Free PMC article.
-
Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013-2016.Philos Trans R Soc Lond B Biol Sci. 2017 May 26;372(1721):20160308. doi: 10.1098/rstb.2016.0308. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 28396479 Free PMC article.
-
Ebola outbreak in West Africa, 2014 - 2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response.J Infect Public Health. 2020 Jul;13(7):956-962. doi: 10.1016/j.jiph.2020.03.014. Epub 2020 May 29. J Infect Public Health. 2020. PMID: 32475805 Review.
-
How to treat Ebola virus infections? A lesson from the field.Curr Opin Virol. 2017 Jun;24:9-15. doi: 10.1016/j.coviro.2017.03.003. Epub 2017 Apr 11. Curr Opin Virol. 2017. PMID: 28410486 Review.
-
A systematic review and meta-analysis of patient data from the West Africa (2013-16) Ebola virus disease epidemic.Clin Microbiol Infect. 2019 Nov;25(11):1307-1314. doi: 10.1016/j.cmi.2019.06.032. Epub 2019 Jul 5. Clin Microbiol Infect. 2019. PMID: 31284032 Free PMC article.
Cited by
-
The economic value of personal protective equipment for healthcare workers.PLOS Glob Public Health. 2023 Jun 22;3(6):e0002043. doi: 10.1371/journal.pgph.0002043. eCollection 2023. PLOS Glob Public Health. 2023. PMID: 37347760 Free PMC article.
-
A stabilized spatiotemporal kriging method for disease mapping and application to male oral cancer and female breast cancer in Taiwan.BMC Med Res Methodol. 2022 Oct 13;22(1):270. doi: 10.1186/s12874-022-01749-9. BMC Med Res Methodol. 2022. PMID: 36229788 Free PMC article.
-
Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China.Int J Environ Res Public Health. 2020 May 31;17(11):3903. doi: 10.3390/ijerph17113903. Int J Environ Res Public Health. 2020. PMID: 32486403 Free PMC article.
-
Linear and Machine Learning modelling for spatiotemporal disease predictions: Force-of-Infection of Chagas disease.PLoS Negl Trop Dis. 2022 Jul 19;16(7):e0010594. doi: 10.1371/journal.pntd.0010594. eCollection 2022 Jul. PLoS Negl Trop Dis. 2022. PMID: 35853042 Free PMC article.
References
-
- Abdulhafedh A. How to detect and remove temporal autocorrelation in vehicular crash data. J Transp Technol. 2017;7(02):133.
-
- Anselin L. Local indicators of spatial association—LISA. Geog Anal. 1995;27(2):93–115.
-
- Barry A., Ahuka-Mundeke S., Ahmed Y.A., Allarangar Y., Anoko J., Archer B.N. Outbreak of Ebola virus disease in the Democratic Republic of the Congo, April–May, 2018: an epidemiological study. The Lancet. 2018;392(10143):213–221. - PubMed
-
- Bivand R.S., Wong D.W. Comparing implementations of global and local indicators of spatial association. Test. 2018;27(3):716–748.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical